Integrating Real-Time Control Applications Into Different Control Systems.

Nadeem Shehzad, Martin Killenberg, Martin Hierholzer, Christian Schmidt (DESY, Germany), Sebastian Marsching (aquenos GmbH, Germany), Chris Paul Iatrou (TU Dresden, Germany), Michael Kuntzsch, Reinhard Steinbrück (HZDR, Germany), Jan Wychowaniak (Łódź University of Technology, Poland)

Motivation
- Device servers for the radio frequency controls at particle accelerators shall be reused at different facilities
- All facilities are using different control system middleware (DOOCS, EPICS 3, WINCC + OPC-UA)

Problem
- Sophisticated algorithms with strong couplings to one particular middleware make the applications difficult to port
 - Middleware data structures used in the device logic
 - Middleware threads, locks and process flows

Approach
- Have an adapter layer which decouples the device logic from the middleware
- Device independent

Control System Adapter and Process Variables
- Device Thread
 - Only talks to device-side sender or receiver
 - No direct interaction with the middleware
- Middleware Thread
 - Only talks to the control-system-side sender or receiver
 - Synchronises adapter variables and control system variables

Registering Process Variables
- Keep the application code (device logic) independent from the middleware
- Minimise device-dependent code on the control system side

Implementation of Process Variables
- Lock free queues for thread safety and real-time capability
- Pre-allocated buffers for real-time capability
- Copy references, not buffers for efficiency

Requirements
- Task
 - Complex control algorithms should be used with different control systems

Requirements for Abstraction
- Keep application code middleware independent
- The algorithm must interact with the control system
- Minimise device-dependent code on the control system side

Additional Requirements
- Thread safety
- Real-time capability
- Do not copy large data objects
- Extensible to new middlewares

Device Access Library
- Register based hardware access
 - C++ library with
 - Language bindings to Matlab and Python
 - Graphical User Interface
 - More information: Poster Session 1, Poster 135

Virtual Lab
- Framework for software tests
 - Virtual time: Avoid race conditions in tests
 - Dummy device: Simulate hardware
 - State machine: Simulate firmware
 - More information: Poster Session 1, Poster 100

Control System Adapter
- This poster

ChimeraTK was formerly known as MTCA4U

Status
- Adapter for Process Variables
 - Generic part
 - Thread safe and real-time capable
 - Control system specific part
 - Implementations for DOOCS and EPICS 3 are working
 - OPC-UA adapter is currently being implemented

Next Steps
- Access to middleware features (range limits, engineering units, history)
- Name mapping for process variables (device → control system)

Availability
- All software is published under the GNU Lesser General Public License or the GNU General Public License.

Control System Adapter
https://github.com/ChimeraTK/ControlSystemAdapter

EPICS extension
http://oss.aquenos.com/smarttool/epics-mtca4u/

DOOCS extension
https://github.com/ChimeraTK/ControlSystemAdapter-DoocsAdapter

OPC-UA extension
https://github.com/ChimeraTK/ControlSystemAdapter-OPC-UA-Adapter

20th IEEE Real Time Conference
Padova, Italy, 2016

Presenters:
Nadeem Shehzad
DESY
22607 Hamburg
Germany
nadeem.shehzad@desy.de

Corresponding Author:
Martin Killenberg
DESY
22607 Hamburg
Germany
martin.killenberg@desy.de