

The new Global Muon Trigger of the CMS experiment

Real Time Conference 2016, Padua, Italy

Thomas Reis CERN/EP-CMD On behalf of the CMS Collaboration

6 June 2016

Large Hadron Collider

- 27 km circumference
- ~100 m underground
- 7 TeV nominal beam energy
- 40 MHz bunch crossing rate
- ~1 billion collisions / s

MS

• 4 experiments

LHC 27 km

Large Hadron Collider

Thomas Reis, Real Time 2016, Padua

CMS Collaboration

Compact Muon Solenoid

CMS DETECTOR STEEL RETURN YOKE Total weight : 14,000 tonnes 12,500 tonnes SILICON TRACKERS Overall diameter : 15.0 m Pixel (100x150 μ m) ~16m² ~66M channels Overall length : 28.7 m Microstrips (80x180 µm) ~200m² ~9.6M channels Magnetic field : 3.8 T SUPERCONDUCTING SOLENOID Niobium titanium coil carrying ~18,000A MUON CHAMBERS Barrel: 250 Drift Tube, 480 Resistive Plate Chambers Endcaps: 540 Cathode Strip, 576 Resistive Plate Chambers PRESHOWER Silicon strips ~16m² ~137,000 channels FORWARD CALORIMETER Steel + Quartz fibres ~2,000 Channels CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL) ~76,000 scintillating PbWO₄ crystals HADRON CALORIMETER (HCAL) Brass + Plastic scintillator ~7,000 channels

CMS - subdetectors

Particles from previous collision are still in the detector when protons from the next bunch collide

CMS - event

Trigger

• Only a small fraction of the 40 MHz LHC collision rate can be analysed

DAQ event building

100 kHz

• CMS uses a 2-level trigger system to select interesting events for analysis

L1 trigger

- 2016 upgrade
- Custom HW in μ TCA standard
- 3.8 µs latency
- High granularity data kept in readout buffer until L1 decision
- 100 kHz output rate
- Trigger control and distribution system (TCDS) delivers trigger signal to front end electronics
 - Can throttle the trigger
- Silicon tracker not used at L1
 - Presentation by T. Schuh
 - Poster by L. Calligaris

High Level Trigger (HLT)

- Entirely in software
- Processor farm with ~20000 cores
- Working on full events built by DAQ
- File based (On RAM disks)
 - Decouple online SW from HLT SW
- 1 kHz output rate
- HLT farm used for cloud computing during technical stops of the LHC
 - Ongoing work to also use it between collision runs

Data Acquisition

- DAQ2 operating since 2015 run
 - Dedicated talk by J. Hegeman
- Readout and build events at L1 trigger rate (100 kHz)
- Event size O(1 MB)
- High throughput system (200 GB/s)
- Lossless system
 - Backpressure is generated if event building cannot keep up
 - Throttles trigger if needed

CMS status

- LHC start up very fast, despite problems in accelerator chain and incidents with local fauna
- Data taking efficiency by luminosity greater 91%

Upgraded Global Muon Trigger

Why upgrade the trigger?

- Higher LHC performance in run 2
 - Higher centre-of-mass energy of 13 TeV (7/8 TeV in run 1)
 - Increased luminosity
 - Higher pileup
 - Increased trigger output rate would require major detector upgrades
- A more selective trigger is needed
 - Making use of capabilities of new FPGAs and fast serial links
 - Higher precision in particle parameter measurements
 - Implement more sophisticated algorithms
- More trigger algorithms in the menu
 - Previously limited to 128 algorithms
 - Now max. 512 algorithms
- Several components showed signs of ageing
- Move to common HW for different subsystems

Upgraded muon trigger

Hardware

Trigger processor: Master Processor 7 (MP7)

- Advanced mezzanine card (AMC) in µTCA standard
- Generic design for stream data processor
 - Used by several other CMS systems as well
 - e.g. GT, BMTF, Calorimeter trigger
- Based on Xilinx Virtex-7 690 FPGA
- 72 optical Rx & 72 optical Tx links at 10 Gb/s

- DAQ link: AMC13
 - A 13th AMC in the second µTCA carrier hub (MCH) slot of the crate
 - 10 Gb/s optical links to central DAQ
 - Distributes LHC clock, timing and control signals to MP7 over backplane

GMT installation

Global muon trigger installation in the CMS service cavern

٠

Track finders

- Barrel Track Finder
 - DT and RPC
 - |η| < 0.83</p>
 - 2D track finding
 - 12 wedges in φ
 - **Overlap Track Finder**
 - DT, CSC and RPC
 - ► 0.83 < |η| < 1.24</p>
 - Pattern finding
 - 6 sectors in φ on each detector side
- Endcap Track Finder
 - CSC and RPC
 - |η| > 1.24
 - 3D track finding
 - 6 sectors in φ on each detector side

Upgraded Global Muon Trigger

Thomas Reis, Real Time 2016, Padua

Global Muon Trigger algorithm

Thomas Reis, Real Time 2016, Padua

Duplicate muon removal

- The same muon can be found twice (~1% of the muons)
 - Due to overlap of adjacent track finder wedges/sectors or adjacent TF
 - This would increase the trigger rate for double muon triggers
- Two methods of cancelling duplicates
 - Track address based (Track Address: Track segments used to build the muon)
 - Used to cancel duplicates between BMTF wedges
 - A tracks are marked as duplicates if they share one common segment
 - Plan to used address based cancel out also for EMTF muons
 - Muon coordinate based
 - Different address schemes between TF require duplicate cancel out by muon track coordinates
 - Tracks within the cancel out window are marked as duplicates
 - Cancel out window $\Delta R^2 = f_1 * \Delta \eta^2 + f_2 * \Delta \phi^2$
 - Window shape tunable by factors f_1 and f_2
- If a duplicate is found the muon with higher quality is kept
- Tuning needed to keep real close-by di-muons
- Cancel out unit catches ~80% of duplicate muons while keeping ~70% efficiency for di-muons

- The GMT receives 1008 energy sums from the calorimeter trigger on 28 optical links
 - 36 (φ) * 28 (η)
 - ▶ 5 bit per sum
 - Sums over 5x5 calo regions

- Muon coordinates are extrapolated to the vertex (LUTs)
- Muons are matched to corresponding energy sum index (LUTs)
- For each muon two isolations are calculated (LUTs)
 - Absolute isolation
 - Relative isolation
 - Energy sum relative to muon p_T
- Isolation bits are merged with output muons
- Algorithm in FW but not commissioned yet
- Other isolation algorithms are under study

Firmware

- Virtex-7 690 T
- Pipelined logic at 240 MHz and 40 MHz
- Resource utilisation
 - Logic: 51%
 - Block RAM: 32%
 - Inputs 10 Gb/s: 64/72
 - Outputs 10 Gb/s: 36/72

- Links, readout, IPbus
- Muon deserialisation / serialisation
- Cancel out
- Sorting
- Isolation

Firmware

- Initially developed with Xilinx ISE
 - Needed SmartXplorer for parallel implementation runs on a cluster of 5 machines
 - Took at least 13h for the implementation
 - Needed to floor plan entire design to achieve timing closure
- Change to Vivado reduced implementation time to 2h
 - Still need some floor planing constraining several functional blocks to clock regions

•	Links, readout, IPbus	d to on
•	Muon deserialisation / serialisation	nstraine ock regi
•	Cancel out	с С С
•	Isolation	

Sorting P

Partly constrained

Trigger emulation

- Trigger emulator software within the CMS software framework
 - Use cases:
 - Rate and efficiency studies
 - Production of Monte Carlo simulated samples
 - Algorithm studies
 - Creating test patterns for firmware validation on test bench
 - Calculating LUTs for duplicate cancel out and sorting
 - Planned: Online DQM comparisons with FW
- 100% agreement between HW output and emulator
 - Verified with test patterns from simulated samples
 - Compared unpacked data from collision events with emulator output
- Written in C++
- Emulator configuration
 - Automated from offline conditions synchronized to online DB configuration
 - O2O: Online to offline DB configuration transfer
 - Manually from configuration file for studies

Control and monitoring software

- Common control and monitoring software (SWATCH) is used to configure and monitor the system (Dedicated presentation by T. Williams)
- Centrally controlled run control state machine
 - Load configuration and LUTs from online DB at configure
- Monitoring status registers from MP7 and AMC13
 - Muon counters at input, after first and second sorting stages
 - Bunch counter mismatches
 - Disabled inputs
 - Input/Output link status
 - DAQ readout status

Thomas Reis, Real Time 2016, Padua

• CMS L1 trigger was upgraded to µTCA based system

- New global muon trigger uses generic, FPGA based, trigger processor board with 144 optical inputs and outputs at 10 Gb/s
 - Sorting of muons from regional muon track finders including regional sorting previously done on independent boards
 - Removal of duplicate muons from overlap areas
 - Absolute and relative isolation bits assignment for muons sent to global trigger
 - Firmware implemented and 100% compatible with software emulation
- New global muon trigger has been commissioned and is used for data taking since March 2016
 - Preliminary studies show lower rates while maintaining similar efficiencies as in 2015