

IHEP, Beijing

Upgrade of End-cap TOF Trigger system on BESIII

Jingzhou ZHAO, Zhen-An LIU, Wenxuan GONG, Fang DENG, Libo CHENG, Zhi WU, Ke WANG, Jie HUANG

In the ETOF(End-cap TOF) upgrade of BESIII, MRPC(Multi-gap Resistive Plate Chamber) detectors are used. ETOF is designed with 72 MRPCs. 24 channels signals are generated from each MRPC, in which 6 neighbouring channels OR together in Front-End Electronic(FEE) side. So 288 channel hit signals are sent to ETOF trigger system for trigger logic. The MPRC hit signal is about 30 ns width after FEE. Hit signals are stretched and trigger data are stored by TDPP (Trigger Data Pre-Processor) and then sent to ETOFT (End-cap TOF Trigger) through 10 high speed fiber links. Trigger data are aligned and stored in FIFO in ETOFT. Trigger logic in the center FPGA counts hits signals and Back to Back events and gives out ETOF trigger conditions: NETOF.GE.1, NETOF .GE.2 and NETOF.BB. ETOF trigger conditions are integrated with other detector trigger conditions by SIF2(Signal Integrate and Fan-out Version2) to Global Trigger to generate L1 signal.

ETOF detector module: 36 MRPCs on each side. MRPCs are staggered in two layers to make sure its area detect percent is more than 99%.

Trigger Unit:

CTTP_{Outer} = **CTTP0** or **CTTP 2**; $CTTP_{Inner} = CTTP1 \text{ or } CTTP3;$ $MRPC_N = CTTP_{Outer}$ or $CTTP_{Inner.}$.

Trigger Simulation parameter:

- •Magnetic field intensity B = 1 Tesla;
- •Semimajor of BTOF a=1.33m;
- •Radius of ETOF: R0=0.454m,
- R1=0.649m, R2=0.844m.
- •Pt range: Pt>660Mev/C;
- • ϕ 0 range: $0 \le \phi$ 0 $< 2\pi$;

ETOF trigger system consists of TDPP, ETOFT and SIF2 boards.

Data Alignment Protocol: ➤ Data Layer: Trigger data transmission and error rate check. >Procotol layer: Match system clock and RocketIO Reference Clock.

►Link Layer: Consists of RocketIO, optical transceiver and fiber cable.

7 MRPCs central asymmetry with 1 on reference side is the area to find back to back event.

System Clock	East TDPP	Weat TDPP	ETOFT Board
Fanout Board			
			The state of the s
Optical Fiber			
AFRICA			-

Trigger system in the lab. Now trigger system has been installed on BESIII in Sept.2015 and already run stable for half a year.

≻- СНО	95BC	95BC	B5B5	(957C)	B5B5	957C	B5B5 X	FFFF	(cccc	FFFF	(DDDD)	FFFF
>- СН1	95BC	95BC	X B5B5	(957C)	B5B5	957C	B5B5 X	FFFF	(cccc)(0000)	FFFF)	(DDDD)(0000)	FFFF
≻ CH2	95BC	95BC	X B5B5	(957C)	B5B5	957C	B5B5 X	FFFF	(cccc)	FFFF)	(DDDD)	FFFF
≻ СНЗ	95BC	95BC	X B5B5	(957C)	B5B5	957C	B5B5 X	FFFF	(FFFF)	(DDDD)	FFFF
≻ CH4	FFFF	FFFF	∑ 95BC	(B5B5)	957C	B5B5	957C X	B5B5 (957C)	B5B5 (FF	FF (CCCC)	0000 FFF	F (DI
≻ CH5	95BC	95BC	X B5B5	(957C)	B5B5	957C	B5B5 X	FFFF	(FFFF)	(DDDD)	FFFF
≻- СН6	95BC	95BC	X B5B5	(957C)	B5B5	957C	B5B5 X	957C X B5B5	FFFF		FFFF X	DDDD
≻ СН7	95BC	95BC	X B5B5	(957C)	B5B5	957C	B5B5 X	957C X B5B5	FFFF		FFFF X	DDDD
≻- СН8	95BC	95BC	X B5B5	(957C)	B5B5	957C	B5B5 X	957C X B5B5	FFFF	(cccc)	FFFF X	DDDD
≻- СН9	FFFF	FFFF	X B5B5	(95BC)	B5B5	95BC	B5B5 X	95BC (B5B5)	95BC (B5B5)	957C (B5B5)	957C X B5B5 X	957C X B

Data after Deserial on ETOFT, viewed by Chipscope.

сно	00000 00000	B5B5957C	X AAAAAAA X	FFFFFFF	ВВВВВВВВ
сн1	00000 00000	B5B5957C	X AAAAAAA X	FFFFFFF	ВВВВВВВВ
∽ СН2	00000 00000	B5B5957C	X AAAAAAA X	FFFFFFF	BBBBBBBB
∽- СНЗ	00000 00000	B5B5957C	X AAAAAAA X	FFFFFFF	BBBBBBBB
∽- СН4	00000 00000	B5B5957C	X 0000AAAA X	FFFFFFF	0000BBBB
► CH5	00000 00000	B5B5957C	X AAAAAAA X	FFFFFFF	ВВВВВВВВ
∽ СН6	00000 00000	B5B5957C	X AAAAAAA X	FFFFFFF	BBBBBBBB
∽ СН7	00000 00000	B5B5957C	X AAAAAAA X	FFFFFFF	ВВВВВВВВ
∽- СН8	00000 00000	B5B5957C	X AAAAAAA X	FFFFFFF	BBBBBBBB
CHO	00000 00000	D6D60670	V 00000000	CCCCCCC	00000000

Data after alignment protocol on ETOFT, viewed by Chipscope.

Trigger	Efficiency
Conditions	
NETOF.GE.	99.74%
1	
NETOF.GE.	97.73%
2	
NETOF.BB	96.33%

ETOF trigger efficiency checked by Bhabha event selected online. NETOF.GE.1 is used for Physics data taking.