
 

Distributed continuous event – based data acquisition 

using FlexRIO FPGA 

C. Taliercio, G. Manduchi, A. Luchetta, A. Rigoni  

Abstract–High-speed event driven acquisition is normally 

performed by ADC boards with a given number of pre and post 

trigger samples that are recorded upon the occurrence of a 

hardware trigger.  A direct physical connection is therefore 

required between the source of event (trigger) and the ADC 

because any other software-based communication method would 

introduce a delay in triggering that would turn out to be not 

acceptable in many cases. 

This paper proposes a solution for the relaxation of the event 

communication time that can be in this case carried out by 

software messaging (e.g. via a LAN) provided that the system 

components are synchronized in time (e.g. using IEEE 1588 

synchronization mechanism). The information about the exact 

event occurrence time is contained in the software packet sent to 

communicate the event and is used by the ADC FPGA to identify 

the exact sample in the ADC sample queue. The length of the 

ADC sample queue will depend on the maximum delay in 

software event message communication time. 

A prototype implementation using a National FlexRIO FPGA 

board connected with an ADC device is presented as proof of 

concept. 

I. INTRODUCTION 

NALOG to digital converters (ADCs) are extensively used 

in fusion experiments to collect a variety of signals such as 

signals from electromagnetic probes and plasma diagnostics. 

In the past, for plasma discharges of short duration, transient 

recorders have been normally used. Once initialized, a 

transient recorder waits for a trigger signal continuously filling 

a circular buffer. When the trigger has been received and the 

programmed number of post trigger samples acquired, the 

transient recorder stops and the content is read afterwards. 

Knowing the trigger time and the exact clock frequency it is 

possible to tag each sample with time.  

The data acquisition paradigm has changed in the recent 

experiments running long lasting plasma discharges. In this 

case continuous data acquisition is required because the 

amount of the required memory to store acquired signals 

before readout would be too large, and in any case it would be 

not acceptable to wait until the end of the pulse before being 

able to look at signals. Handling a stream of data from the 

ADC to computer memory, and eventually on disk, limits the 

maximum sampling speed that can be achieved in acquisition. 

Appropriate buffering techniques can be adopted to increase 

data throughput but in practice no more than some tens of 
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Msamples/s can be handled in ADC data streaming, to be 

divided by the number of ADC channels. Larger sampling 

speeds do not normally permit continuous data streaming as 

they would produce an unmanageable amount of data. High 

speed data acquisition is for this reason usually triggered by 

events, either synchronous or asynchronous, signaling the 

occurrence of some physical phenomenon that requires a 

larger dynamics in data acquisition during a time window 

centered on the event time. Commercial solutions exist (see 

e.g. [1]) for this kind of data acquisition combining the use of 

a circular buffer with continuous acquisition. When a trigger 

signaling the event occurrence has been received and the 

programmed number of post trigger acquired, the pre and post 

samples describing the evolution of the signal during the 

specified time window around the event are transferred to 

computer memory while the ADC is again recirculating the 

input buffer waiting for the next event. In this way it is 

possible to complement continuous data acquisition at 

relatively low frequency with high speed data bursts acquired 

on event occurrence, using the combination of two different 

hardware solutions. 

 

 

 
Fig. 1 Continuous and Event Driven Acquisition. Implemented with different 

hardware solutions. 

In order to provide a correct association of samples with time 

it is necessary to know the precise time of the trigger and the 

exact frequency of the conversion clock provided to the ADC 

device. The usual approach adopted in fusion experiments is 

the use of a timing system that provides phase locked clock 

signals and triggers at a (normally programmable) set of times. 

A link, normally in fiber optic, connects all the timing devices 

in the experiment plant and brings a synchronizing clock 

signal, possibly encoding timing events. Every connected 

timing device will derive phase locked clock signals and 

triggers feeding the local ADC devices.  

A 



 

A different approach in timing synchronization has been 

introduced by the IEEE1588 Precise Time Protocol (PTP) [2]. 

Using IEEE1588 PTP the network used for computer 

communication is also used to synchronize the computer clock 

by means of a message passing protocol synchronizing a set of 

slave devices to the reference clock. The precision in time that 

can be achieved in synchronization depends on the quality of 

the network communication and in particular on the jitter in 

communication times. A precision of 100 ns in 

synchronization has been measured in tests performed with 

PTP [3] and it can be further reduced with a properly 

configured network, using PTP aware routers. This precision 

is enough for most data acquisition requirements in fusion 

devices and PTP is foreseen in ITER, where every component 

involved in data acquisition and control will be synchronized 

to a grand master clock using GPS for maximum time 

precision. PTP can be used both to synchronize CPU clocks to 

achieve time precision in software applications and in 

dedicated hardware devices (see e.g. [4]) to generate a phase 

locked clock signal and trigger signals at pre-programmed 

times. In this way there is no need for a dedicated physical 

link connecting the timing devices. This provides a great 

simplification cabling especially in large experimental plants. 

There is however still the need for a physical connection in 

event triggered data acquisition between the event (trigger) 

source and the target ADC devices. In this case, in fact, it is 

not possible to select in advance the time of the trigger in PTP 

aware timing devices and a direct physical connection is 

required, leading again to a cabling configuration not 

dissimilar from that of the former timing systems. Sending the 

trigger information via the network is not acceptable due to 

unpredictable delay in transmission that would not allow a 

proper reconstruction in time of the acquired samples.  

In this paper a different approach is proposed for handling 

data acquisition triggered by asynchronous events, based on 

the following two assumptions: 

- Every component of the system has a precise cognition of 

time; 

- There is a data link between event detectors and target 

ADC devices. 

 

Observe that the second assumption must be satisfied if both 

the event generator and the ADC device are synchronized via 

PTP. Flexible distribution of events such as multicast can be 

achieved in this way via software.  

Using a data link for event communication introduces some 

unpredictable delay between the event generation time and its 

reception time. For this reason, a timestamp bringing the exact 

time of the event occurrence will be associated with the event 

data packet. The receiving ADC will hold recent signal history 

in a circular buffer, providing at the same time a subsampled 

version of the (filtered) input signal for data streaming. Based 

on the notion of time and on the time tagging the trigger data 

packet it is also possible to provide, in a separate output 

channel, the set of samples acquired at full conversion speed. 

The internal circular buffer will be wide enough to keep the 

signal history for a time equal to the sum of time required for 

event transmission and the desired time before the event 

occurrence in the time window for acquisition.  

The management of the circular buffer as well as the proper 

tagging of acquired samples with time will be carried out by 

the FPGA supervising ADC operation. In the paper a 

prototype implementation based on NI Flex RIO [5] is 

presented as a proof of concept. Using FlexRIO for 

prototyping FPGA applications offers several advantages such 

as short development time, if compared with direct HDL 

programming, and may represent also a solution for 

production where a small number of ADC channels is 

involved. For more channels, this solution could be 

unacceptably expensive. For this reason, it is foreseen that the 

developed algorithms will be implemented in low-cost FPGA-

based boards. 

 

II. PROTOTYPE DEVELOPMENT 

A proof of concept system has been developed using the 

following National Instruments devices: 

- NI PXIe 7962R: the FlexRIO device hosting the FPGA; 

- NI5751: ADC adapter for FlexRIO, 16 Channels 50 

MSamples/s, 14 bit. The acquired samples are directly 

available in the FlexRIO FPGA; 

- PXI 1073: rack hosting the FlexRIO and a bridge for 

MXI communication with a NI PCIe 8361 board 

mounted in the host PC.  

Windows is running in the host PC because LabVIEW FPGA 

Module for FPGA development for cRIO and FlexRIO is 

supported only on Windows OS. In this initial version of the 

prototype PTP is not used for time synchronization. In order to 

simulate time synchronization, a timing module is used to 

generate both  a clock signal for ADC conversion and a pre-

programmed trigger signal to be sent to a waveform generator 

that produces the waveform to be acquired. Shortly after the 

trigger generation, the PC controlling the timing module will 

send a data packet to the FPGA bringing the trigger time, thus 

emulating the delayed reception of the trigger message.  

 

 
Fig. 2 Hardware and data flow schema implemented in the proof of 

concept test.  

When the generated waveform is a rising edge generated by 

the waveform generator upon the occurrence of the trigger,  



 

the proper behavior of the system can be checked by 

visualizing the acquired samples sent by the FPGA program in 

correspondence to the pre-programmed window around the 

event time.   If everything works correctly, the edge will 

appear after a number of samples equal to the programmed 

number of pre-trigger samples. In this application, acquired 

samples are sent via communication FIFO to LabVIEW for 

visualization. In a more realistic environment not involving 

LabVIEW, samples fill be sent via the communication FIFO 

to routines running on the host system (Windows or Linux) 

and that will eventually store data on disk. Two different 

outputs FIFO are defined in the system: one for streaming 

subsampled data, and the other for high frequency data bursts 

upon event occurrence. 

 

The FPGA program, developed in LabVIEW, is organized in 

three different single cycle timed loops. The first loop runs at 

50 MHz, that is the sampling frequency of the ADC. In this 

loop the input samples from the ADC are stored in one 

internal FIFO able to store up to 4096 samples per channel. 

The same channels, after filtering and subsampling are sent to 

the first output FIFO to provide continuous data streaming. 

 

 
Fig. 3 FPGA loop schema acquiring analog signals, filtering and 

clock synchronization  

The second loop runs at 100 MHz and supervises the 

management of a circular buffer stored in DRAM. This is the 

buffer holding the recent history of acquired signals and it will 

be used for retrieving samples corresponding to the time 

window around the event time. If a trigger message tagged 

with time T1 is received at time T2, the sample corresponding 

to the actual trigger generation will be stored in the DRAM at 

an address corresponding to (T2-T1)*F previous samples in 

the circular buffer, where F=50E6 is the sampling frequency. 

 

 
Fig. 4 FPGA loop schema writing DRAM  

The use of DRAM for the circular buffer is mandated by the 

fact that a large number of samples must be maintained in the 

history to account for realistic delays in trigger message 

transmission. Here, a 1 MSample DRAM per channel is used, 

making it possible to handle a delay in trigger notification up 

to 20 ms. The 4096 samples internal FIFO (per channel) is 

necessary to handle DRAM memory access. At every cycle 

the DRAM state is checked and, if the DRAM is available for 

store, a new sample is transferred from the FIFO, if present. 

The cycle time of this loop is shorter than that of the first loop 

so that it is possible to consume the internal FIFO after the 

DRAM pipeline is fully operational. 

The third loop, freely running, monitors trigger input. When a 

trigger with associated time is detected, the indexes on the 

DRAM circular buffer are computed based on the current time 

maintained in step by providing a synchronized clock to the 

FPGA and the ADC. The trigger time, and DRAM readout is 

initiated, reading a sample from the DRAM, if available, at 

every cycle.  

 

 
Fig. 5 FPGA loop schema monitoring Event Trigger and 

communicating data to Host via DMA  

A state machine supervises this loop and when in DRAM 

reading state, at every cycle the status of the DRAM is 

checked for the availability of a new read sample and the 

output FIFO is checked for its availability in sending a sample. 

When both conditions are met, the sample is transferred from 

the DRAM to the output FIFO. When a number of samples 

corresponding to the required samples in the time window 

have been transferred, the system is ready to receive a new 

trigger notification. In order to avoid too much interference in 

DRAM write access, possibly overflowing the internal FIFO 

(the used DRAM does not support a dual port), read requests 

in the third loop are interleaved with write requests in the first 

loop using a shared register.  The interleaving logic is 

summarized in blocks “Synchronization with DRAM Read” 

and “Synchronization with DRAM Write” in figures 4 and 5, 

respectively.  

III. FUTURE WORK 

The proof of concept has been developed based on the 

supervision of a Windows PC running LabVIEW. When the 

system is used in production it is however unlikely that 

LabVIEW will be used and therefore we investigated the 

feasibility of two possible evolutions of the system. 



 

The first approach retains the usage of NI hardware and in 

particular of the FlexRIO as FPGA, but uses Linux-based data 

acquisition. In this case Windows LabVIEW would be 

replaced by the NI-RIO driver for Linux, providing the run-

time support for RIO devices, that is, the management of the 

Input/Output from/to Linux software and the FPGA. Input for 

setting pre and post samples and or configuring a set of 

parameters and output for reading the continuous and burst 

data streams will be managed by programs using the NI-RIO 

drives and communicating with the data system for signal 

storage on disk. In this configuration, PTP synchronization 

can be carried out by a PTP aware timing devices for: 

- Tagging event generation with precise (absolute) time, 

that will be included in the trigger message; 

- Providing a synchronized clock to the FPGA and the 

ADC so that times internally computed from clock 

counters can be trusted. 

This configuration is being considered for the ITER Neutral 

Beam Injector (NBI) Test facility currently under construction 

at Consorzio RFX, Padova (Italy)[6]. Currently a traditional 

timing system is used for the first of the two scheduled 

experiments, but the use of IEEE 1588 PTP is foreseen for the 

development of the ITER size NBI [7]. The foreseen number 

of signals requiring this kind of acquisition is small thus 

justifying the cost per channel of this solution (considering the 

investment in development time for the alternative solution 

listed below).  

In the longer term, we are considering investigating a 

different possible approach, that is, porting the algorithms 

implemented in FlexRIO under System On Chip (SoC) 

boards,such as Red Pytaya[8], Parallella [9] or Zedboard [10], 

all using the Zynq solution. The SoC architecture provides a 

tight connection between the FPGA and the processor and 

therefore it represents the optimal solution for this kind of 

application, where the CPU supervises communication over 

data link and interaction with the data system and the FPGA 

carries out the required buffering and trigger management. 
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