

Distributed continuous event – based data acquisition

using FlexRIO FPGA

C. Taliercio, G. Manduchi, A. Luchetta, A. Rigoni

Abstract–High-speed event driven acquisition is normally

performed by ADC boards with a given number of pre and post

trigger samples that are recorded upon the occurrence of a

hardware trigger. A direct physical connection is therefore

required between the source of event (trigger) and the ADC

because any other software-based communication method would

introduce a delay in triggering that would turn out to be not

acceptable in many cases.

This paper proposes a solution for the relaxation of the event

communication time that can be in this case carried out by

software messaging (e.g. via a LAN) provided that the system

components are synchronized in time (e.g. using IEEE 1588

synchronization mechanism). The information about the exact

event occurrence time is contained in the software packet sent to

communicate the event and is used by the ADC FPGA to identify

the exact sample in the ADC sample queue. The length of the

ADC sample queue will depend on the maximum delay in

software event message communication time.

A prototype implementation using a National FlexRIO FPGA

board connected with an ADC device is presented as proof of

concept.

I. INTRODUCTION

NALOG to digital converters (ADCs) are extensively used

in fusion experiments to collect a variety of signals such as

signals from electromagnetic probes and plasma diagnostics.

In the past, for plasma discharges of short duration, transient

recorders have been normally used. Once initialized, a

transient recorder waits for a trigger signal continuously filling

a circular buffer. When the trigger has been received and the

programmed number of post trigger samples acquired, the

transient recorder stops and the content is read afterwards.

Knowing the trigger time and the exact clock frequency it is

possible to tag each sample with time.

The data acquisition paradigm has changed in the recent

experiments running long lasting plasma discharges. In this

case continuous data acquisition is required because the

amount of the required memory to store acquired signals

before readout would be too large, and in any case it would be

not acceptable to wait until the end of the pulse before being

able to look at signals. Handling a stream of data from the

ADC to computer memory, and eventually on disk, limits the

maximum sampling speed that can be achieved in acquisition.

Appropriate buffering techniques can be adopted to increase

data throughput but in practice no more than some tens of

Manuscript received April 3, 2016. (Write the date on which you submitted

your paper for review.)
 The Authors are with Consorzio RFX (CNR, ENEA, INFN, Università di

Padova, Acciaierie Venete SpA), corso Stati Uniti, 4 – 35127 Padova, Italy

(telephone: +39-049-8295039, e-mail: gabriele.manduchi@igi.cnr.it).

Msamples/s can be handled in ADC data streaming, to be

divided by the number of ADC channels. Larger sampling

speeds do not normally permit continuous data streaming as

they would produce an unmanageable amount of data. High

speed data acquisition is for this reason usually triggered by

events, either synchronous or asynchronous, signaling the

occurrence of some physical phenomenon that requires a

larger dynamics in data acquisition during a time window

centered on the event time. Commercial solutions exist (see

e.g. [1]) for this kind of data acquisition combining the use of

a circular buffer with continuous acquisition. When a trigger

signaling the event occurrence has been received and the

programmed number of post trigger acquired, the pre and post

samples describing the evolution of the signal during the

specified time window around the event are transferred to

computer memory while the ADC is again recirculating the

input buffer waiting for the next event. In this way it is

possible to complement continuous data acquisition at

relatively low frequency with high speed data bursts acquired

on event occurrence, using the combination of two different

hardware solutions.

Fig. 1 Continuous and Event Driven Acquisition. Implemented with different

hardware solutions.

In order to provide a correct association of samples with time

it is necessary to know the precise time of the trigger and the

exact frequency of the conversion clock provided to the ADC

device. The usual approach adopted in fusion experiments is

the use of a timing system that provides phase locked clock

signals and triggers at a (normally programmable) set of times.

A link, normally in fiber optic, connects all the timing devices

in the experiment plant and brings a synchronizing clock

signal, possibly encoding timing events. Every connected

timing device will derive phase locked clock signals and

triggers feeding the local ADC devices.

A

A different approach in timing synchronization has been

introduced by the IEEE1588 Precise Time Protocol (PTP) [2].

Using IEEE1588 PTP the network used for computer

communication is also used to synchronize the computer clock

by means of a message passing protocol synchronizing a set of

slave devices to the reference clock. The precision in time that

can be achieved in synchronization depends on the quality of

the network communication and in particular on the jitter in

communication times. A precision of 100 ns in

synchronization has been measured in tests performed with

PTP [3] and it can be further reduced with a properly

configured network, using PTP aware routers. This precision

is enough for most data acquisition requirements in fusion

devices and PTP is foreseen in ITER, where every component

involved in data acquisition and control will be synchronized

to a grand master clock using GPS for maximum time

precision. PTP can be used both to synchronize CPU clocks to

achieve time precision in software applications and in

dedicated hardware devices (see e.g. [4]) to generate a phase

locked clock signal and trigger signals at pre-programmed

times. In this way there is no need for a dedicated physical

link connecting the timing devices. This provides a great

simplification cabling especially in large experimental plants.

There is however still the need for a physical connection in

event triggered data acquisition between the event (trigger)

source and the target ADC devices. In this case, in fact, it is

not possible to select in advance the time of the trigger in PTP

aware timing devices and a direct physical connection is

required, leading again to a cabling configuration not

dissimilar from that of the former timing systems. Sending the

trigger information via the network is not acceptable due to

unpredictable delay in transmission that would not allow a

proper reconstruction in time of the acquired samples.

In this paper a different approach is proposed for handling

data acquisition triggered by asynchronous events, based on

the following two assumptions:

- Every component of the system has a precise cognition of

time;

- There is a data link between event detectors and target

ADC devices.

Observe that the second assumption must be satisfied if both

the event generator and the ADC device are synchronized via

PTP. Flexible distribution of events such as multicast can be

achieved in this way via software.

Using a data link for event communication introduces some

unpredictable delay between the event generation time and its

reception time. For this reason, a timestamp bringing the exact

time of the event occurrence will be associated with the event

data packet. The receiving ADC will hold recent signal history

in a circular buffer, providing at the same time a subsampled

version of the (filtered) input signal for data streaming. Based

on the notion of time and on the time tagging the trigger data

packet it is also possible to provide, in a separate output

channel, the set of samples acquired at full conversion speed.

The internal circular buffer will be wide enough to keep the

signal history for a time equal to the sum of time required for

event transmission and the desired time before the event

occurrence in the time window for acquisition.

The management of the circular buffer as well as the proper

tagging of acquired samples with time will be carried out by

the FPGA supervising ADC operation. In the paper a

prototype implementation based on NI Flex RIO [5] is

presented as a proof of concept. Using FlexRIO for

prototyping FPGA applications offers several advantages such

as short development time, if compared with direct HDL

programming, and may represent also a solution for

production where a small number of ADC channels is

involved. For more channels, this solution could be

unacceptably expensive. For this reason, it is foreseen that the

developed algorithms will be implemented in low-cost FPGA-

based boards.

II. PROTOTYPE DEVELOPMENT

A proof of concept system has been developed using the

following National Instruments devices:

- NI PXIe 7962R: the FlexRIO device hosting the FPGA;

- NI5751: ADC adapter for FlexRIO, 16 Channels 50

MSamples/s, 14 bit. The acquired samples are directly

available in the FlexRIO FPGA;

- PXI 1073: rack hosting the FlexRIO and a bridge for

MXI communication with a NI PCIe 8361 board

mounted in the host PC.

Windows is running in the host PC because LabVIEW FPGA

Module for FPGA development for cRIO and FlexRIO is

supported only on Windows OS. In this initial version of the

prototype PTP is not used for time synchronization. In order to

simulate time synchronization, a timing module is used to

generate both a clock signal for ADC conversion and a pre-

programmed trigger signal to be sent to a waveform generator

that produces the waveform to be acquired. Shortly after the

trigger generation, the PC controlling the timing module will

send a data packet to the FPGA bringing the trigger time, thus

emulating the delayed reception of the trigger message.

Fig. 2 Hardware and data flow schema implemented in the proof of

concept test.

When the generated waveform is a rising edge generated by

the waveform generator upon the occurrence of the trigger,

the proper behavior of the system can be checked by

visualizing the acquired samples sent by the FPGA program in

correspondence to the pre-programmed window around the

event time. If everything works correctly, the edge will

appear after a number of samples equal to the programmed

number of pre-trigger samples. In this application, acquired

samples are sent via communication FIFO to LabVIEW for

visualization. In a more realistic environment not involving

LabVIEW, samples fill be sent via the communication FIFO

to routines running on the host system (Windows or Linux)

and that will eventually store data on disk. Two different

outputs FIFO are defined in the system: one for streaming

subsampled data, and the other for high frequency data bursts

upon event occurrence.

The FPGA program, developed in LabVIEW, is organized in

three different single cycle timed loops. The first loop runs at

50 MHz, that is the sampling frequency of the ADC. In this

loop the input samples from the ADC are stored in one

internal FIFO able to store up to 4096 samples per channel.

The same channels, after filtering and subsampling are sent to

the first output FIFO to provide continuous data streaming.

Fig. 3 FPGA loop schema acquiring analog signals, filtering and

clock synchronization

The second loop runs at 100 MHz and supervises the

management of a circular buffer stored in DRAM. This is the

buffer holding the recent history of acquired signals and it will

be used for retrieving samples corresponding to the time

window around the event time. If a trigger message tagged

with time T1 is received at time T2, the sample corresponding

to the actual trigger generation will be stored in the DRAM at

an address corresponding to (T2-T1)*F previous samples in

the circular buffer, where F=50E6 is the sampling frequency.

Fig. 4 FPGA loop schema writing DRAM

The use of DRAM for the circular buffer is mandated by the

fact that a large number of samples must be maintained in the

history to account for realistic delays in trigger message

transmission. Here, a 1 MSample DRAM per channel is used,

making it possible to handle a delay in trigger notification up

to 20 ms. The 4096 samples internal FIFO (per channel) is

necessary to handle DRAM memory access. At every cycle

the DRAM state is checked and, if the DRAM is available for

store, a new sample is transferred from the FIFO, if present.

The cycle time of this loop is shorter than that of the first loop

so that it is possible to consume the internal FIFO after the

DRAM pipeline is fully operational.

The third loop, freely running, monitors trigger input. When a

trigger with associated time is detected, the indexes on the

DRAM circular buffer are computed based on the current time

maintained in step by providing a synchronized clock to the

FPGA and the ADC. The trigger time, and DRAM readout is

initiated, reading a sample from the DRAM, if available, at

every cycle.

Fig. 5 FPGA loop schema monitoring Event Trigger and

communicating data to Host via DMA

A state machine supervises this loop and when in DRAM

reading state, at every cycle the status of the DRAM is

checked for the availability of a new read sample and the

output FIFO is checked for its availability in sending a sample.

When both conditions are met, the sample is transferred from

the DRAM to the output FIFO. When a number of samples

corresponding to the required samples in the time window

have been transferred, the system is ready to receive a new

trigger notification. In order to avoid too much interference in

DRAM write access, possibly overflowing the internal FIFO

(the used DRAM does not support a dual port), read requests

in the third loop are interleaved with write requests in the first

loop using a shared register. The interleaving logic is

summarized in blocks “Synchronization with DRAM Read”

and “Synchronization with DRAM Write” in figures 4 and 5,

respectively.

III. FUTURE WORK

The proof of concept has been developed based on the

supervision of a Windows PC running LabVIEW. When the

system is used in production it is however unlikely that

LabVIEW will be used and therefore we investigated the

feasibility of two possible evolutions of the system.

The first approach retains the usage of NI hardware and in

particular of the FlexRIO as FPGA, but uses Linux-based data

acquisition. In this case Windows LabVIEW would be

replaced by the NI-RIO driver for Linux, providing the run-

time support for RIO devices, that is, the management of the

Input/Output from/to Linux software and the FPGA. Input for

setting pre and post samples and or configuring a set of

parameters and output for reading the continuous and burst

data streams will be managed by programs using the NI-RIO

drives and communicating with the data system for signal

storage on disk. In this configuration, PTP synchronization

can be carried out by a PTP aware timing devices for:

- Tagging event generation with precise (absolute) time,

that will be included in the trigger message;

- Providing a synchronized clock to the FPGA and the

ADC so that times internally computed from clock

counters can be trusted.

This configuration is being considered for the ITER Neutral

Beam Injector (NBI) Test facility currently under construction

at Consorzio RFX, Padova (Italy)[6]. Currently a traditional

timing system is used for the first of the two scheduled

experiments, but the use of IEEE 1588 PTP is foreseen for the

development of the ITER size NBI [7]. The foreseen number

of signals requiring this kind of acquisition is small thus

justifying the cost per channel of this solution (considering the

investment in development time for the alternative solution

listed below).

In the longer term, we are considering investigating a

different possible approach, that is, porting the algorithms

implemented in FlexRIO under System On Chip (SoC)

boards,such as Red Pytaya[8], Parallella [9] or Zedboard [10],

all using the Zynq solution. The SoC architecture provides a

tight connection between the FPGA and the processor and

therefore it represents the optimal solution for this kind of

application, where the CPU supervises communication over

data link and interaction with the data system and the FPGA

carries out the required buffering and trigger management.

REFERENCES

[1] CAEN DT 5720 Available:

 http://www.caen.it/csite/CaenProd.jsp?parent=14&idmod=624
[2] IEEE 15800 standard Available:

https://standards.ieee.org/findstds/standard/1588-2008.html.

[3] A. Soppelsa, A. Luchetta, G. Nmanduchi “Assessment of Precise Time

Protocol”, IEEE Trans. Nucl. Sci., Vol: 57, pp: 503-509, Apr 2010

[4] NI PXI 6683 Available:

http://sine.ni.com/nips/cds/view/p/lang/it/nid/211064
[5] NI FlexRIO Available: http://www.ni.com/flexrio/#

[6] P. Sonato, P. Agostinetti, G. Anaclerio, V. Antoni, O. Barana, M. Bigi,

et al., “The ITER full size plasma source device design”, Fusion
Engineering and Design, vol. 84, no. 2–6, pp. 269-274, Jun. 2009

[7] A. Luchetta, G. Manduchi, C. Taliercio “Current status of SPIDER

CODAS and its evolution towards the ITER compliant NBI CODAS”,
this conference.

[8] Red Pitaya Available: http://redpitaya.com/

[9] Parallella Available: https://www.parallella.org/
[10] Zedboard Available: http://zedboard.org/

http://www.caen.it/csite/CaenProd.jsp?parent=14&idmod=624
http://sine.ni.com/nips/cds/view/p/lang/it/nid/211064
http://www.sciencedirect.com/science/article/pii/S0920379608004122
http://redpitaya.com/
https://www.parallella.org/

	I. INTRODUCTION
	- Every component of the system has a precise cognition of time;

	II. Prototype Development
	III. Future Work
	References

