
Software tests and simulations for real-time
applications based on virtual time

Martin Hierholzer, Geogin Varghese, Martin Killenberg

Abstract—Unit and integration tests are powerful tools to
ensure software quality. Writing such tests for real-time appli-
cations accessing hardware requires not only replacing the real
hardware with a virtual implementation in software. Also time
must be controlled precisely. For a number of reasons the time
scale in the simulated environment should not be identical to
the real time: computations needed for a complex plant model
might just be too slow for a real time simulation, or some long-
term software behaviour should be tested in a short-running
test. Communications with devices often require a specific timing
which should be subject of a unit test. These examples demand
using a virtual time scale in software tests.

We present the VirtualLab framework as part of the MTCA4U
tool kit. It has been designed to help implementing such tests by
introducing the concept of virtual time and combining it with
an implementation basis for virtual devices and plant models.
The framework is designed modularly so that virtual devices
and model components can be reused to test different parts of
the control system software.

I. INTRODUCTION

THE VirtualLab framework allows testing control appli-
cations which access hardware without the need for

dedicated testing equipment. The tests can be run on a standard
PC, e.g. as a contineous integration test triggered by source
code changes. VirtualLab has been developed as part of the
MicroTCA.4 user tool kit MTCA4U[2]. Since the use of
MTCA4U is not at all limited to MicroTCA-based applica-
tions, it is has recently been renamed into ChimeraTK[3].

In this paper, special emphasis is put on the concept of
virtual time, which is a central element in the design of
pure software-driven tests for real-time applications. With the
understanding of this approach, the other concepts used in
this framework can be explained. The final goal is to imple-
ment virtual devices which emulate any hardware components
needed to run the application close enough to allow testing
the application.

The tests itself can be written based on the BOOST Test
Library[1]. A simple test would e.g. send an operator’s com-
mand to the application, wait until the application is finished
with the processing and then check if the virtual devices have
received the right actions. The test can also induce a state

Manuscript received on June 1, 2016.
Martin Hierholzer is with Deutsches Elektronen-Synchrotron DESY,

Notkestr. 85, 22607 Hamburg, Germany (corresponding author, e-mail:
martin.hierholzer@desy.de).

Geogin Varghese is with Deutsches Elektronen-Synchrotron
DESY, Notkestr. 85, 22607 Hamburg, Germany (presenter, e-mail:
geogin.varghese@desy.de).

Martin Killenberg is with Deutsches Elektronen-Synchrotron DESY,
Notkestr. 85, 22607 Hamburg, Germany (e-mail: martin.killenberg@desy.de).

change in one of the virtual devices, wait until the application
has processed the information and check if it takes the right
actions.

Virtual time - as opposed to real time - can be controlled by
software. This is important since the tests are running outside
the real-time environment. Simulating hardware components
might take considerable CPU time and thus could require
a slower execution than in the production setup. Also a
typical contineous integration test server will run many jobs in
parallel, thus no real-time behaviour can be expected from the
application. Therefore, not only hardware components have to
be replaced by virtual devices, also time should be substituted
with virtual time while running the tests.

II. OVERALL STRUCTURE OF A VIRTUAL TEST
ENVIRONMENT

Fig. 1 is showing the structure of a test using the VirtualLab
at the example of a radio frequency (RF) control application
for a particle accelerator. The working principle of such an
application is of no particular interest here, it shall only be
mentioned that a cavity, which is an accelerating element of
a particle accelerator, is driven by a high-frequency electro-
magnetic field. This field needs to be regulated by a control
loop running on a fast FPGA. The control application to be
tested runs on a normal CPU, governs the many parameters
of the control loop and extracts diagnostic information.

For testing this application, both the firmware running the
control loop as well as the cavity have to be replaced with
a model which is just close enough to the real hardware that
the application can run properly. Some components present
in the real setup can be neglected completely, such as the
digital-to-analogue and analogue-to-digital converters and the
high-power amplifier driving the cavity. Important is only that
the software observes a realistic response to its actions in the
firmware registers.

The various building blocks shown in Fig. 1 will be ex-
plained in the following sections.

III. THE CONECPT OF VIRTUAL TIME

In a very simple approach, virtual time can be achieved
by reimplementing any time dependent functionality based
on a simple variable representing the current time. In case
of the VirtualLab, a 64-bit integer has been chosen which
represents picoseconds. This allows sufficient resolution even
for high frequency applications like the RF controls of a
particle accelerator, while still being able to reflect long times
like several month.



Fig. 1. Overall structure of a test environment written with the VirtualLab framework at the example of the test of the RF control application server of
a particle accelerator. The control application server to be tested is represented by the green box at the bottom. It interacts with an ADC/DAC card which
has been replaced by a virtual device for the tests. The virtual device is connected to a simple cavity model providing the ADC with a realistic response to
the DAC signal. The control loop is running on an FPGA on the ADC/DAC card and the control application communicates through registers with the card’s
firmware. All virtual components can be controlled by the test routines, which also may interact with the control application server.

onCompute()

buffer

getValue()

virtual time t

function call information flow

v
a
lid

ity
 p

e
rio

d

v
a
lid

ity
 p

e
rio

d

m
a
x
im

u
m

 g
a
p

m
a
x
im

u
m

 g
a
p

m
a
x
im

u
m

 g
a
p

v
a
lid

ity
 p

e
rio

d

in
itia

l s
ta

te

1 2 3 4 5 7 68

Fig. 2. Sketch of the implementation of virtual time in the class StateVariableSet. The blue circles on the top represent the requests via a call
to getValue() incoming in the sequence of the numbers inside each circle. The red circles in the middle represent the calls to the callback function
onCompute() which triggers computing a new model state. The green circles at the bottom represent the entries in the buffer storing the computed states
for later re-use. New states are computed according to the configured validity period and maximum gap time. Request number 8 requires computing a new
state in the past, which triggers the deletion of any later state which had already been computed (illustrated by the red box).

The replacement with virtual time should only be done
for those parts of the application which actually need to
be controlled during the tests. This usually includes any
parts interacting with the (virtual) hardware, while e.g. some
network communication routines might interally use timers
which should be kept unchanged.

To save unnecessary computations especially in more com-
plex setups, the VirtualLab framework does not assume a fixed
sampling rate when stepping through virtual time to compute
model states of the virtual hardware components. Instead, each
component will request updates for a given virtual time from

the other components when needed. This has a number of
implications on the implementation of virtual time:

• Multiple components might need to request information
from the same component. To save computing time,
already computed states shall be reused.

• Often, a state cannot change significalty within a short
period of time. Thus a certain validity period can be
assigned, so a second request falling within this period
will receive a copy of the state returned to the first
request.

• A slowly updating component might request values from



a quickly changing component, which needs a certain
minimum sampling frequency to compute proper values.
Intermediate values must therefore be computed before
returning the requested state. The maximum distance
between those intermediate values is called the maximum
gap.

• The virtual time is not the same for all components, e.g.
due to simulated cable delays.

• Requests might come in for a virtual time earlier than
the latest computed state, e.g. if some event triggered by
the latest state results in an action requiring a more dense
sampling of a period in the past.

• If states are computed in an approximation only (e.g. by
numerically solving a differential equation), going back in
time as described by the last point will “slightly” violate
causality, because the recalculated values can differ. This
needs to be taken into account while designing the model
components and tests, and must be mitigated by other
means. If the approximation is good enough, this effect
often presents no issue.

The described behaviour has been implemented in the class
StateVariableSet. Each model component which has
a time-dependent internal state must use this class to store
its state. The model provides a callback function named
onCompute() to the StateVariableSet instance, in
which new states will be computed.

The behavour of this class is illustrated in Fig. 2. In the
setup phase, an initial state has to be provided. The first
request comes in for the virtual time t = 0 and thus will
be answered with the initial state. Request 2 will trigger the
callback function which computes a new state based on the
latest one available, which is the initial state. Request 3 falls
into the validity period of the state computed on the second
request and thus will receive the same state. Request 4 again
needs to trigger the callback function, since it falls outside
the latest state’s validity period which was not prolonged by
request 3. As long as requests stay within the maximum gap
time w.r.t. the latest state, new states can be directly computed,
as in request 5. Request 6 exceeds the maximum gap time by
more than a factor of two, thus two intermediate states will be
computed. Requests can also go back in time. If such a request
falls within the validity period of an already computed state,
like in request 7, that state will be returned. On the other hand,
request 8 goes back in time but does not coincide with an
already computed state, thus a new state has to be computed.
In this case, all states which were already computed for a later
virtual time will be deleted, since they are no longer valid. A
second request at the same virtual time as request 5 might
now return a slightly different result, since it would be based
on the result of request 8 instead of 4.

IV. SIGNAL SINKS AND SOURCES

To allow reusing virtual devices and model components in
different virtual setups, each component is kept separately as
much as possible. Signals exchanged between the components
are transported by signal sinks and sources, which can be
connected to each other in the test routines e.g. during ini-
tialisation. As stated in the previous section, model states are

computed upon request. This implies that also signal values
need to be requested from other components (as opposed to
pushing updates to connected components). To simplify the
implementation of trivial components, a signal source already
contains a StateVariableSet which takes care of calling
the callback function for computing new values and storing
them for reuse. As a welcome side effect, the model can
also obtain its own past output values, if it needs them for
its computations.

The signal source usually computes values upon request
in the callback function. In addition, components can also
actively provide values to their signal sources. This can be
used e.g. if a virtual device receives values from the control
application and has to provide them to other components.

V. DUMMY REGISTER SET

The virtual device is plugged in as a back end into the
MTCA4U/ChimeraTK DeviceAccess library (see also [2]).
The DeviceAccess library is normally used to access real
hardware and allows transparently switching between several
back end implementation to communicate with devices e.g.
through PCI express or some network-based protocol. This
mechanism can also be used to replace the hardware with
a virtual implementation in software. VirtualLab provides a
base class VirtualLabBackend with useful utilities to
implement such virtual devices more easily. Devices in the
DeviceAccess library are register-based, which means they
define several named registers consisting each of a single value
or an array of values.

VI. FIRMWARE STATE MACHINE

To implement the firmware of virtual devices, a state
machine based on the BOOST meta state machine library[4]
is used. State machine events will be generated when writing
or reading registers by the control application, which can be
used e.g. to trigger model computations by requesting values
from the device’s signal sinks.

VII. VIRTUAL TIMERS

Firmware often needs to perform periodic actions, like
reading samples from an analogue-to-digital converter and
writing them into a buffer. For such tasks, virtual timers can be
set which will fire state machine events when they are expiring
in virtual time. Multiple virtual timers can be combined to
count time consistently, e.g. when using one timer to trigger
the individual samples and a second timer to trigger sampling
a short block of samples periodically. When advancing the
combined timer until the slower second timer will fire once,
the faster first timer will be automatically fired many times
to keep them consistent. The timers can be controlled by the
test routines and should generally be kept synchronised to the
virtual time of the application to be tested.

VIII. INTERACTION OF ALL COMPONENTS

The interaction of all VirtualLab components can be ex-
plained best at the example of the RF control application as



shown in Fig. 1. The control application communicates with
the virtual device in the same way as with the real device
in the production setup. It also interacts with the rest of the
control system (e.g. an operator panel), which is here emulated
by the test routines. The firmware state machine of the virtual
device governs the control loop by updating its parameters
when the control application changes the control registers. It
also gathers diagnostic information, like a recording of the RF
amplitude measured in the cavity over time, and provides it to
the application in an array register. The control loop is acting
on the cavity model and thus is connected through signal sinks
and sources to it. Since the control loop implements also an
integral controller, it needs to store an internal time-dependent
state in a StateVariableSet. The test routine is able to
control the virtual time of the firmware through a virtual timer.
Since the firmware fills the diagnostic buffers with information
from the signal sink, the virtual timer effectivly controls the
virtual time of the control loop and the cavity model as well.

The test routine first initialises the VirtualLab environment
by instantiating the virtual ADC/DAC card and the cavity
mode, and connecting their signal sinks and sources. Next it
starts the control application in a separate thread and allows it
to initialise itself. Once the application is initialised, the test
routine can start the actual tests.

Let us assume a procedure to ramp up the RF amplitude
should be tested. The control loop implemented in firmware
shall only be capable of keeping the RF amplitude at a given
setpoint, so the control application has to increase the setpoint
in small steps until the desired amplitude is reached. The
control application shall receive periodic interrupts from the
firmware at which the hardware interactions should take place.

First, the test routine sends the operator’s command to the
control application to ramp up the amplitude to a certain
value. Then it advances the virtual timer until the interrupt
is triggered. The application reacts to the interrupt by writing
the setpoint of the first step to the register set. The firmware
updates the control loop parameters accordingly. Now the
test routine again advances the virtual timer until the next
interrupt triggers. Since the firmware records the measured RF
amplitude into a buffer (for later readout by the application),
it requests values from the signal sink for each sample in the
buffer. This is realised by combining two timers, one to trigger
recording a sample and a second to generate the interrupt. The
necessary calculations for all samples for the cavity model and
the control loop are triggered intrinsically by the respective
signal sources, obeying the configured validity periods and
maximum gap times of the signal sources. The test routine
checks now if the desired setpoint has been reached. The
control application receives the next interrupt and reads the
sampling buffer. It will do some safety checks and proceed
with the next amplitude step.

The test routine repeats these steps until the final setpoint
has been reached. This will test a successful ramping up of
the amplitude. To test error conditions, it repeats the entire
procedure but induces a fault at some point, e.g. let the
amplitude drop to zero by instructing the cavity model to
return constantly zero. In this case the control application stops
the ramp, changes the setpoint to zero and informs the operator

with an error message. All these actions are checked by the
test routine.

IX. CONCLUSIONS

The VirtualLab framework allows testing real-time control
applications in a non-real-time environment without the need
for dedicated testing hardware. Virtual time is introduced to
facilitate control over timing aspects of the virtual hardware
and the application to be tested. The framework is available
as open source software[5] under the GNU Lesser General
Public License. It integrates well with the other components
of the MTCA4U/ChimeraTK framework, especially the De-
viceAccess library.

REFERENCES

[1] BOOST test library documentation,
http://www.boost.org/doc/libs/1 61 0/libs/test/doc/html/index.html.

[2] N. Shehzad et al., Modular Software for MicroTCA.4 Based Control
Applications, These Proceedings, 20th IEEE Real Time Conference,
Padova, Italy, 2016

[3] ChimeraTK - Control system and Hardware Interface with
Mapped and Extensible Register-based device Abstraction Tool
Kit, https://github.com/ChimeraTK

[4] BOOST meta state machine library documentation,
http://www.boost.org/doc/libs/1 61 0/libs/msm/doc/HTML/index.html

[5] Source code of the VirtualLab framework,
https://github.com/ChimeraTK/VirtualLab


