uSOP: a microprocessor-based Service-Oriented Platform for Control and Monitoring

Aloisio, F. Di Capua, R. Giordano, P. Scotto di Vetta
Dipartimento di Fisica, Univ. di Napoli Federico II and INFN

Anastasio, V. Izzo, G. Tortone
INFN - Sezione di Napoli

Ameli
INFN - Sezione di Roma

Branchini
INFN - Sezione di Roma Tre
Overview

• uSOP: a Service-Oriented Platform for embedded applications
• Hardware
• Software
• uSOP at work: monitoring @ KEK Laboratory
 – Belle2, Beast
• Future plans
• Conclusions ...
• ... and one for aficionados of manga 漫画 ...
uSOP

- **uP-based, Service-Oriented Platform** for embedded applications
- Designed for slow-controls the Belle2 experiment (KEK-Tsukuba, J)
- Strongly oriented to SPI, I2C, JTAG, UART, with isolated power for peripherals and sensors
- Fully managed remotely
- Running Linux OS (Debian)
- 3U Eurocard native form factor, expandable
- Derived-from and compatible-with BeagleBone Black open-source project
LET’S SPEAK
uSOP – uP and utilities

- 512 MB DDR3 RAM
- 4 GB Flash eMMC
- USB device
- 10/100 Ethernet
- USB host
- uSD
- 10/100 Ethernet (controls and management only. See next slide)

A. Aloisio
20th IEEE Real Time 2016 - Padua, Italy
Remote Management

- Remote control over IP for:
 - uP RST
 - Boot mode
 - Power on/off

UART over IP:
- Console
- Bootloader

- More tasks can be implemented (watchdog, controls, ...)

- Based on the latest version of Lantronix Xport-Pro
- μP Freescale MCF5208, MMU-less architecture, 8MB RAM, 16MB Flash
- SoC running uCLinux with a full cross-compiled SDK
uSOP – Peripherals/Intf

- 16 x GPIO
- 2 x RS232 (*)
- 2 x SPI (*)
- 2 x I2C (*)
- 4 x 12 bit AIN (**)
- + 2 on-board power monitoring

• = fully isolated, 5V-12V supply
** = buffered

Pace Scientific

Timers
PWM
Event Capture
PRU

FPGA firmware download
SOFTWARE
Linux porting

• Linux distribution: Debian - armv7l
 – image-builder script to generate a Linux Debian rootfs image for operating system installation on eMMC or network booting
• Full support for compilers and applications (packages management via APT repository)
• Kernels: major releases available
 – 3.x (up to 3.8.13 with Xenomai - Real-Time Linux support)
 – 4.x (up to 4.5.0)
• bootloader: U-Boot
 – some patching done on official TI bootloader in order to enable network booting and boot media selection (eMMC, uSD, network)
• first stage boot available:
 – eMMC
 – uSD
 – UART (XModem/YModem protocol)
 – Ethernet (DHCP + TFTP)
• Linux boot available
 – eMMC
 – uSD
 – Ethernet (TFTP)
• Devices for root filesystem (rootfs) mounting:
 – eMMC
 – uSD
 – Ethernet (NFS)
EPICS

Experimental Physics and Industrial Control System

• EPICS (http://www.aps.anl.gov/epics/) is a set of Open Source software tools, libraries and applications developed collaboratively and used worldwide to create distributed soft real-time control systems for scientific instruments such as particle accelerators, telescopes and other large scientific experiments.

• On uSOP:
 – Straightforward compilation on ARM
 – Variety of EPICS extensions available on board:
 • ALH (ALarm Handler)
 • PV gateway
 • Asyn
 • StreamDevice
 • Autosave
 – IOCs for:
 • Linear LTC2499 (I2C)
 • Linear LTC2983 (SPI)
 • Sitara ADC (parallel)

• On XportPRO
 – uCLinux customization, to enable additional software packages and security reinforcement of network services (SSH vs telnet)
 – Custom, low-footprint EPICS implementation, cross-compiled for uCLinux
 – IOCs for:
 • I2C protocol software emulation
 • SITARA power control
 • SITARA first stage boot setting (eMMC, Ethernet, uSD, UART)
 • LED activity
Beebotte as EPICS IOC consumer

- Beebotte (https://beebotte.com/) is an open cloud platform for network connected objects.
- In our system, EPICS IOCs are interfaced with Beebotte using the bbt-Python library. Data is pushed to Beebotte every few minutes.
- A Publish/Subscribe model offers bidirectional data communication. Users decide which data to retain by using persistent and/or transient messages.
- Beebotte has REST API to let backend (server) applications read, write and publish data.

Traffic from SPI, I2C, UART, JTAG, ADC

EPICS IOCs <-> bbt_python

Pub/Sub

REST API

Source: Beebotte.com

Websockets

Pub/Sub

Traffic from

Web Traffic
Auth. requests

Server (backend)

Clients (Browsers)

20th IEEE Real Time 2016 - Padua, Italy
System Metrics Dasboard

- In the same fashion, Beebotte is also used to monitor the uSOP main system metrics:
 - CPU load
 - RAM/FLASH usage
 - Network activity
 - peripheral power supplies
SLOWDOWN...
$\Delta\Sigma$ ADC – LTC2499 noise floor

- uSOP bench test with LTC2499:
 - $\Delta\Sigma$ ADC, 24 bit
 - I2C, powered by uSOP isolated supply
 - $V_{in} = 0$V, Input shorted to local ground
 - ~5 Hz sampling rate
 - x1 mode
 - 50 Hz filter
 - V_{ref}: 5V
 - Read-out by EPICS IOC
 - GUI by CSS/BOY

Source: linear.com
BEAST is a detector presently taking data at SuperKEKB Interaction Point, to study beam background.

uSOP is monitoring T and Rh of the 18 BEAST crystals (LYSO, CsI, CsI(Tl)). Data available via EPICS and Beebotte.
The EndCap ECL monitoring system 1/2

- Minimal, stand-alone monitoring system at the EndCap ECL test station
- 4 sectors over 32 monitored to control the conditioning system (T, Rh)
- Up-time > 1 year
- Data available via both EPICS and cloud

uSOP box
EndCap Sectors 7F and 8F
Cable Adapters

EndCap Test Station at Fuji Exp. Hall, KEK
The ECL EndCap monitoring system 2/2

• The final monitoring system will be installed at KEK during 2016
• Forward and Backward ECL:
 – 2112 CsI(Tl) crystals, 32 sectors
 – T and Rh monitor, 128 analog channels (96 thermistors + 32 Rh probes)
• Features:
 – 3-wire read-out to cancel the 40m cable stray resistance
 – Stray thermocouple effects cancellation
 – 8 uSOP boards, 16 ADCs (24 bit)
 – 6U, 12HP form factor, shielded
 – Selective ground scheme to avoid loops
 – Read-out and controls via network
IS UNDER DEVELOPMENT...
Texas Instruments has released recently the 1.5 GHz dual-core Cortex A15 Sitara AM5728.

On this uP, we have started the design of a new platform with FPGA and dual high-speed ADC: uSOP+.

Not just monitoring: DSP, hardware processing, high-speed links, ...
Conclusions

• uSOP has been intensively tested at KEK, starting from Apr. 2015
• Stable and reliable LINUX platform, with uptime > 1 year
• Access to SITARA Event Capture peripherals
• Hardware controllers for all most common field busses
• Fully (re)configurable and managed remotely (from brick to fully functional)
• Designed to work as a stand-alone unit, yet easy to deploy in complex control infrastructures
• EPICS and NSMv2 compliant, IOCs developed for all the needed DAQ units

• A last thing for the Manga lovers...
Just for fun ...

• Japanese colleagues told us Usop (ウソップ) is one of the One Piece characters by the manga writer Eiichiro Oda

• ... More about Usop on wikipedia:
 – https://it.wikipedia.org/wiki/Usop
The End
BACKUP
Cortex A Cores (32bit)

<table>
<thead>
<tr>
<th>Cortex-A</th>
<th>ARMv7-A</th>
<th>ARMv8-A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortex-A5[^23]</td>
<td>Application profile, ARM / Thumb / Thumb-2 / DSP / SIMD / Optional VFPv4-D / FPU / Optional NEON / Jazelle RCT and DBX, 1-4 cores / optional MPICore, snooping control unit (SCU), generic interrupt controller (GIC), accelerator coherence port (ACP)</td>
<td>4.84 KB / 4.84 KB L1, MMU + TrustZone</td>
</tr>
<tr>
<td>Cortex-A7[^24]</td>
<td>Application profile, ARM / Thumb / Thumb-2 / DSP / VFPv4-D / FPU / NEON / Jazelle RCT and DBX / Hardware virtualization, in-order execution, superscalar, 1-4 SMP cores, MPICore, Large Physical Address Extensions (LPAE), snooping control unit (SCU), generic interrupt controller (GIC), ACP, architecture and feature set are identical to A15, 8-10 stage pipeline, low-power design[^25]</td>
<td>0-64 KB / 0-64 KB L1, 0-1 MB L2, MMU + TrustZone</td>
</tr>
<tr>
<td>Cortex-A8[^26]</td>
<td>Application profile, ARM / Thumb / Thumb-2 / VFPv3 FPU / NEON / Jazelle RCT and DAC, 13-stage superscalar pipeline</td>
<td>16-32 KB / 16-32 KB L1, 0-1 MB L2 opt ECC, MMU + TrustZone</td>
</tr>
<tr>
<td>Cortex-A9[^27]</td>
<td>Application profile, ARM / Thumb / Thumb-2 / DSP / Optional VFPv3 FPU / Optional NEON / Jazelle RCT and DBX, out-of-order speculative issue superscalar, 1-4 SMP cores, MPICore, snooping control unit (SCU), generic interrupt controller (GIC), accelerator coherence port (ACP)</td>
<td>16-64 KB / 16-64 KB L1, 0-3 MB L2 opt parity, MMU + TrustZone</td>
</tr>
<tr>
<td>Cortex-A12[^28]</td>
<td>Application profile, ARM / Thumb-2 / DSP / VFPv4 FPU / NEON / Hardware virtualization, out-of-order speculative issue superscalar, 1-4 SMP cores, Large Physical Address Extensions (LPAE), snooping control unit (SCU), generic interrupt controller (GIC), accelerator coherence port (ACP)</td>
<td>32-64 KB / 32 KB L1, 256 KB-8 MB L2</td>
</tr>
<tr>
<td>Cortex-A15[^29]</td>
<td>Application profile, ARM / Thumb-2 / DSP / VFPv4 FPU / NEON / Integer divide / fused MAC / Jazelle RCT / hardware virtualization, out-of-order speculative issue superscalar, 1-4 SMP cores, MPICore, Large Physical Address Extensions (LPAE), snooping control unit (SCU), generic interrupt controller (GIC), ACP, 15-24 stage pipeline[^25]</td>
<td>32 KB w/parity / 32 KB w/ECC L1, 0-4 MB L2, L2 has ECC, MMU + TrustZone</td>
</tr>
<tr>
<td>Cortex-A17</td>
<td>Application profile, ARM / Thumb-2 / DSP / VFPv4 FPU / NEON / Integer divide / fused MAC / Jazelle RCT / hardware virtualization, out-of-order speculative issue superscalar, 1-4 SMP cores, MPICore, Large Physical Address Extensions (LPAE), snooping control unit (SCU), generic interrupt controller (GIC), ACP</td>
<td>8-64 KB w/optional parity / 8-64 KB w/optional ECC L1 per core, 120 KB-1 MB L2 w/optional ECC shared</td>
</tr>
</tbody>
</table>

[^23]: A. Aloisio
[^24]: 20th IEEE Real Time 2016 - Padua, Italy
[^25]: Cortex-A Cores (32-bit)
[^26]: ARMv7-A
[^27]: Cortex-A8[^26]
[^28]: ARMv8-A
[^29]: Cortex-A12[^28]
[^30]: Cortex-A15[^29]
Beaglebone Black

BeagleBone Black Development Board
(ACTIVE) BEAGLEBK

Key Document
- BeagleBone Black Quick-Start Guide (external link)
 - BeagleBone Black System Reference Manual (external link)
 - View All Technical Documents (8)

Description
BeagleBone Black is a low-cost, open source, community-supported development platform for ARM® Cortex™-A8 processor developers and hobbyists. Boot Linux in under 10 seconds and get started on Stars™ ARM Cortex-A8 processor development in less than 5 minutes with just a single USB cable.

BeagleBone Black ships with the Debian GNU/Linux™ In onboard FLASH to start evaluation and development. Many other Linux distributions and operating systems are also supported on BeagleBone Black including:
- Ubuntu
- Android
- Fedora

BeagleBone Black's capabilities can be extended using plug-in boards called "capses" that can be plugged into BeagleBone Black's two 40-pin dual-row expansion headers. Capses are available for VGA, LCD, motor control, prototyping, battery power and other functionality. More information.

Visit the BeagleBone Black Support Community
AM572x Sitara™ Processors
Silicon Revision 2.0

1 Device Overview

1.1 Features

- For Silicon Revision 1.1 information, see SPR815
- ARM® Dual Cortex®-A15 Microprocessor Subsystem
- Up to 2 C66x™ Floating-Point VLIW DSP
 - Fully Object-Code Compatible With C67x™ and C94x-x™
 - Up to Thirty-two 16 x 16-Bit Fixed-Point Multiplies per Cycle
- Up to 2.5MB of On-Chip L3 RAM
- Two DDR3/DDR3L Memory Interface (EMIF) Modules
 - Supports up to DDR3-1066
 - Up to 2GB Supported per EMIF
- Dual ARM® Cortex®-M4 co-processor
- IVA-HD Subsystem
- Display Subsystem
 - Full-HD Video (1920 x 1080p, 60 fps)
 - Multiple Video Input and Video Output
 - 2D and 3D Graphics
 - Display Controller With DMA Engine and up to Three Pipelines
 - HDMI™ Encoder: HDMI 1.4a and DVI 1.0 Compliant
- 2x Dual-Core Programmable Real-Time Unit and Industrial Communication Subsystem (PRU-ICSS)
- 2D-Graphics Accelerator (B32D) Subsystem
 - Vivante™ GC320 Core
 - Video Processing Engine (VPE)
- Dual-Core PowerVR® SGX544™ 3D GPU
- Crypto Hardware Accelerators
 - AES, SHA, RNG, DES and 3DES
- Three Video Input Port (VIP) Modules
- General-Purpose Memory Controller (GPMC)
- Enhanced Direct Memory Access (EDMA) Controller
- 2-Port Gigabit Ethernet (GMAC)
- Sixteen 32-Bit General-Purpose Timers
- 32-Bit MPU Watchdog Timer
- Five Inter-Integrated Circuit (I²C) Ports
- HDQ™/1-Wire® Interface
- Ten Configurable UART/IRDA/CIR Modules
- Four Multichannel Serial Peripheral Interfaces (MCSPIS)
- Quad SPI Interface (OSPI)
- SATA Gen2 Interface
- Multichannel Audio Serial Port (MCASP)
- SuperSpeed USB 3.0 Dual-Role Device
- High-Speed USB 2.0 Dual-Role Device
- PCI-Express® 2.0 Subsystems With Two 5-Gbps Lanes
 - One 2-lane Gen2-Compliant Port
 - or Two 1-lane Gen2-Compliant Ports
- Dual Controller Area Network (DCAN) Modules
 - CAN 2.0B Protocol
- Up to 247 General-Purpose I/O (GPIO) Pins
- Power, Reset, and Clock Management
- On-Chip Debug With CTools Technology
- 28-nm CMOS Technology
- 23 mm x 23 mm, 0.8-mm Pitch, 760-Pin BGA (ABC)
Beagleboard X15

What is BeagleBoard-X15?

BeagleBoard-X15 is the top performing, mainline Linux enabled, power-users’ dream board with a core tailored for every computing task and a high speed interface for every connectivity need. Give your algorithms room to stretch!

Processor: TI AM5728 2×1.5-GHz ARM® Cortex-A15

- 2GB DDR3 RAM
- 4GB 8-bit eMMC on-board flash storage
- 2D/3D graphics and video accelerators (GPU)
- 2×700-MHz C66 digital signal processors (DSPs)
- 2×ARM Cortex-M4 microcontrollers (MCUs)
- 4×32-bit programmable real-time units (PRUs)

Connectivity

- 2×Gigabit Ethernet
- 3×SuperSpeed USB 3.0 host
- HighSpeed USB 2.0 client
- eSATA (500mA)
- full-size HDMI video output
- microSD card slot
- Stereo audio in and out
- 4×80-pin headers with PCIe, LCD, mSATA
- and much more...

Software Compatibility

- Debian
- Android
- Ubuntu
- Cloud9 IDE or Node.js
- plus much more

Register your interest
BEAST dashboard