
Web-based Parameter Control and Real-time
Waveform Display for the GRIFFIN Experiment

Bryerton J. Shaw, Pierre-André Amaudruz Member, IEEE, and Daryl P. Bishop

Abstract—New data acquisition electronics is being developed
at TRIUMF for the Gamma-Ray Infrastructure For Fundamental
Investigations of Nuclei (GRIFFIN) spectrometer. Current FPGA
capabilities have allowed opportunities for providing a more user
friendly, web-based, hardware control interface that can be used
without requiring additional custom software. Several software
and firmware components are being developed, including a
real-time waveform viewer, parameter control and read back,
diagnostic counters, and a template-based configuration system
utilizing MIDAS, and Javascript. This paper discusses the various
protocols that were investigated, the benefits and challenges of the
choices made, and the details of the interface implementations.

I. INTRODUCTION

THE Gamma-Ray Infrastructure For Fundamental Inves-
tigations of Nuclei (GRIFFIN) [1] experiment uses the

GRIF-16 Digitizer to read the signals from the GRIFFIN
HPGe detectors, plastic scintillator detectors (with a preampli-
fier), and Si(Li) detectors. To enable ease of use of the device,
a web-based control system was built. This control system
enables the user to see the digitized waveforms, update param-
eters, as well as readback status and statistics. All parameter
changes are synchronized with a Maximum Integrated Data
Acquisition System (MIDAS) [2] Online Database (ODB) in
real-time, and locked during the running of the experiment.

The control system itself runs on a NIOS II embedded
processor [3] instantiated within the Arria V FPGA on the
GRIF-16 digitizer. The web content is served using Mongoose
[4], and the FPGA registers and waveforms are accessed via
custom Avalon [5] Memory-Mapped slaves. Communication
to the MIDAS mhttp server is handled by a custom http client.
All parameter control and readback flows through multiple
MSCB [6] nodes running within the uC-OS II [7] on the NIOS
II processor. On the web browser client, a combination of
HTML, Javascript, AngularJS [8] and Angular Materials [9]
are used to display the content and format it for desktop or
mobile.

Over the course of the integration and development on
the various components that make up the control system
on the GRIF-16 digitizer, some limitations were uncovered,
and additional functionality was desired for future projects.
Specifically, a lack of self described input validation, and the
ability to route messages between devices. A new protocol is

Manuscript received June 2, 2016.
B. Shaw is with Electronics Development, TRIUMF (bryerton@triumf.ca).
P. Amaudruz is with DAQ Group, TRIUMF (amaudruz@triumf.ca).
D. Bishop is with Electronics Development, TRIUMF (daryl@triumf.ca).
TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 Canada

Fig. 1. 3D Model of GRIF-16 Digitizer

being developed in an attempt to overcome these deficits, and
enable TRIUMF to improve the functionality, reliability and
usability of its electronics.

II. OVERVIEW OF THE CONTROL SYSTEM

The web-based control system can be broken into six main
components: MSCB Nodes, HTTP server, MIDAS HTTP
Client, Web Interface, Avalon Memory-Mapped slaves, and
Trigger Memory. These components are integrated together
to produce both real-time parameter control and waveform
display.

A. MSCB Nodes

MSCB is a simple, self-documenting protocol [10], with
each parameter providing its data type, SI unit, and unit prefix
(ie: Voltage in milliVolts). Each MSCB node can be reached
directly, or through an MSCB submaster also running as a
process in the uC-OS II environment. The MSCB nodes are
responsible for all the parameters on the device. They provide
access to the signal processing registers, clock status, link
status, the on-board DACs, and other system resources.

Each node runs an update loop at 10Hz, performing periodic
tasks such as checking the run status bit and verifying link
connections. If an event has occurred requiring attention, the
node will take appropriate action and update the relevant
parameters. If the eSATA cable providing the reference clock
and run status is disconnected, the MSCB node will flag the
eSATA disconnected bit, and switch back to the internal clock.
When the cable is reconnected, it will attempt to establish

978-1-5090-2014-0/16/$31.00 c©2016 Canada

lock to the reference clock, and flag that the cable has been
reconnected.

When commands are issued to an MSCB node, they forward
the appropriate request to the Avalon Bus or C function as
required. If the command is a write request, checks are done
to ensure the input is valid, and that the run is not currently
occurring. If the checks are passed, the parameter and any
appropriate hardware registers are updated. If the command is
a read request, an MSCB reply is generated and sent back to
the MSCB submaster.

B. HTTP Server

The Mongoose web server was modified to run under the
uC-OSII environment by stripping down its feature set. The
modified Mongoose web server has three purposes: serving
static content, handling MSCB messages, and returning wave-
form data. Static content is served directly from a 1Gbit Flash
memory chip located on the GRIF-16. The altera zipfs [11]
filesystem is used, a simple check is done to ensure the file
exists, and the content is delivered. MSCB messages are han-
dled in two ways. The first is via octet-stream HTTP requests
containing well-formed binary MSCB messages, which may
be created via ArrayBuffers in Javascript.These messages are
then passed unaltered to the MSCB Submaster for processing,
and the response is sent back to the web browser. The second
way an MSCB message may be handled is via an HTTP
request for an MSCB node in its entirety. Every parameter in
the MSCB node is packaged into JSON and returned, along
with relevant node related variables. By allowing the MSCB
submaster to be bypassed, we can avoid constant individual
requests to the MSCB nodes and reduce our overall response
latency. Waveform data requests bypass the MSCB nodes as
they are not involved in the processing of the waveforms. If
the web server receives a request for a waveform, it verifies
the channel number is valid, and creates a binary octet-
stream HTTP response containing two 16-bit unsigned integers
describing the number of buffers returned and the number of
samples per buffer, followed by the samples in each buffer as
signed 16-bit integers. This response is then returned to the
web browser.

C. MIDAS HTTP Client

The MIDAS HTTP client is used to handle the template
system, which consists of MIDAS ODB key/value pairs con-
tain the default settings for each detector type, and custom
settings created for a specific ADC channel.

The MIDAS HTTP client polls the MIDAS mhttp server
using the MIDAS AJAX functions [12], and parses the JSON
encoded responses, using these responses to synchronize the
local MSCB parameters with the MIDAS ODB. This synchro-
nization occurs in both directions, if a parameter is updated
locally on the GRIF-16, an appropriate request is made to
update the custom settings for that ADC channel. Conversely,
if a parameter is updated on the ODB for a detector type,
all ADC channels using that detector type are updated unless
being overridden by a custom setting.

Fig. 2. Example of the Web Interface

D. Web Interface

The web interface is served directly to the web browser
by the GRIF-16 Digitizer and consists of multiple HTML,
Javascript and CSS files. Developed using the AngularJS
and Angular Material frameworks, the web interface displays
the parameters and waveforms available from the GRIF-16,
performs input validation on the parameters, and synchronizes
the data being displayed on the web browser with the data
being contained on the GRIF-16.

Each parameter from the GRIF-16 being viewed is passed
to the web browser via a JSON response. This response
contains all of the MSCB parameters information as available
per the MSCB command CMD GET INFO. It also contains
the status of the parameters synchronization with the MIDAS
ODB, by inserting it into the unused “status” field within the
CMD GET INFO request. This status is used to graphically
indicate whether the parameter is set to the default for that
template, a custom setting for that channel, or not in the
template system.

When a parameter is added to the web interface UI, it
is wrapped with additional metadata. This metadata includes
fields such as label, type, and additional descriptors. By using
a custom AngularJS directive, this metadata can be used to
automatically select the appropriate HTML5 input type and
use that input type to force the web browser to perform
validation of MSCB parameter before it is sent to the GRIF-
16.

Synchronization between the web interface UI and the
GRIF-16 is handled entirely within AngularJS. When a param-
eter is updated by the UI, a field associated with the parameter
called “last update” is set to the current time, according to
the web browser. Each time the UI sends out a poll request
for new MSCB parameter values, it saves the current time
the request was made. When the request is returned, if the
parameter value differs from what is currently in the UI, it will
only be updated if the time the request was made is newer than

the “last update” field on the parameter. This check ensures
that if a poll request returns while a user is updating a field, it
does revert the parameter being changed by the user. Should
the parameter change fail for any reason, it will get reverted
the next time a poll request goes out and is returned post user
update.

E. Avalon Memory-Mapped Slaves

Any communication between a NIOS II processor and the
hardware registers within the FPGA must occur via the Avalon
Bus. In order to map various registers into the memory address
of the NIOS II, custom Avalon Memory-Mapped slaves were
created. These slaves were then made into QSYS Components
with C source and header files to enable seamless integration
into the NIOS II environment via the Board Support Package
(BSP). MSCB parameters were then added to the appropriate
MSCB nodes to enable access to the hardware registers.

F. Trigger Memory

In order to capture and display waveform data, a ring buffer
was created in hardware that allowed a variable amount of pre
and post trigger waveform data to be stored until readout. This
“trigger memory” is controlled by the NIOS II via the Avalon
Bus, and is used to capture the raw waveforms, as well as
signals related to the processing of the waveform, such as pulse
height, hit detection, and simulated pulser input. The trigger
input comes directly from the signal processing fabric, but
can be set to force a waveform capture if no trigger has been
received within a certain time frame, mimicking the “auto”
mode on an oscilloscope.

III. LIMITATIONS OF CURRENT CONTROL
SYSTEM

The current control system evolved from MSCB, which
was initially developed for simple communication over slow
serial bus lines to small microcontrollers. As such certain
limitations have naturally arisen, such as direct addressing due
to slow serial communication, and a lack of metadata and input
validation due to memory concerns.

A. Routing Of Messages

As the control system was based around MSCB, it uses
MSCBs addressing structure, which has no ability to pass
messages between nodes, as it requires that a node be directly
accessed, and that a node may not respond to a message not
directed for it. Additionally, since there is no return (or sender)
address specified in the message header, there is no way to
respond to a specific client. Any message received is replied
to blindly by the node being addressed.

This limitation of not being able to route messages did
not impact the experiment at this point, as only five GRIF-
16s are currently in operation, but there is a strong need
for this functionality as the number of GRIF-16 digitizers
increases, and it may be beneficial for cabling purposes to
send messages via the GRIF-C collector cards, which each
GRIF-16 is connected to in a tree-like structure.

B. Metadata and Input Validation

Metadata manually associated with each parameter via
Javascript is used to properly render each parameter. Pa-
rameters are identified by types such as checkboxes, radios,
numbers, lists, text, and other widgets. Depending on the type,
additional metadata is added, describing valid input options
for the parameter. This allows each parameter to be properly
displayed and the options for it described properly. All of
this information is created by hand solely within Javascript,
and is not synchronized automatically by the MSCB nodes.
This leads to the possibility of inconsistencies between the
description of the parameter on the web browser, and its actual
functionality on the MSCB node.

IV. DISCUSSION OF ALTERNATE PROTOCOLS

Due to limitations of the current control system, other
protocols were evaluated to see if a suitable replacement was
available that matched most or all of the following criteria:

• self-documenting variables
• open-source/free
• not dependent on reliable transport
• low resource costs
• route-able across different underlying transport protocols

After an extensive search, the list of potential replacements
was narrowed down to the following four open-source proto-
cols: ZeroMQ [13], CoAP [14], AMQP [16], MQTT [17].
While none of these protocols matched all the criteria, all
have significant advantages, and are widely used, accepted
protocols.

A. ZeroMQ

In terms of traffic routing and message sending ability,
ZeroMQ is an excellent choice. It supports a wide variety of
pattern such as pub-sub, router-deal, and push-pull. ZeroMQ
is also known to be very fast [15]. The underlying ZeroMQ
Transport Protocol (ZMTP) is also very straight-forward and
easy to implement. However, while ZeroMQ clients exist for
small embedded environments, currently all ZeroMQ routers
have been implemented in POSIX/TCP environments. Also
ZeroMQ has no built-in support for variables, so another layer
would still need to be built on top of ZeroMQ for it to be
useful for our purposes. ZeroMQ will most likely see use in
future projects at TRIUMF on the linux-side, but was deemed
to difficult for use in our small embedded devices.

It should be noted it is possible to build alternate transports
for ZeroMQ, as the protocol itself is transport-agnostic.

B. CoAP

The Constrained Application Protocol (CoAP), is very
light-weight and designed specifically for machine-to-machine
(M2M) applications and embedded environments. While typ-
ically run over UDP, it is easily matched to any packet
based transport, and there are forms of resource discovery
available. It has a very simplistic payload design, but much
like ZeroMQ, it would be possible to build upon it to support
some implementation of self-documenting variables. CoAP

TABLE I
LIMITED PROTOCOL FEATURE COMPARISON

Protocol Self Documenting Routing Low Resource Transport Agnostic

ZeroMQ No Yes Yes Yes (ZMTP)

CoAP Resources Broker Yes Yes

AMQP Yes Broker Client Only Yes (Limited Implementations)

MQTT No Broker Yes Yes

does have good resource discovery, so it does have some
ability to ’self document’, however not with the payload data
itself. CoAP was ruled out as it is designed for systems where
every device is directly network-accessible, and due to its
limited variable support, which was deemed insufficient.

C. AMQP

The Advanced Message Queuing Protocol (AMQP) was
a very close fit, with its ability to create self-documenting
messages, various routing methodologies, and clients have
been ported to embedded devices. However it was determined
the brokers which are used to provide the routing ability have
a relatively high memory requirement, and to the authors
knowledge, are only available in linux/windows operating
systems. Much like ZeroMQ, it will most likely see use inside
future projects at TRIUMF in systems running linux.

D. MQTT

The MQTT or ”Mosquito” protocol, is another M2M pro-
tocol, centered around the use of pub/sub and brokers. With
its ultra-simple protocol specifications and straight-forward
embeddable C clients, MQTT was very easy to get running.
However due to a reliance on brokers for message routing,
and complete lack of built-in support for self-documenting
variables, MQTT was determined to be a poor fit for our use
cases.

V. ARCHITECTURE OF NEW PROTOCOL

Based on the previous criteria, and the unsatisfactory results
of the search to find a new protocol to replace the current
implementation, work has begun on a new custom messaging/-
control protocol. The two key features have been deemed to be
self-documenting variables and a flexible routing layer. These
two features expand the utility of our existing system and allow
promising possibilities, such as automatic plot creation and
M2M communication.

A. Self-Documenting Variables

Similar to the MSCB protocol, each variable (or channel in
MSCB parlance) is assigned a base type (such as uint8, sint16,
ascii), SI unit, SI prefix, and number of elements. However
what constitutes a ”channel” in the protocol, is allowed to have
multiple variables associated with it. Crucially, this allows
a multi-dimensional array to be returned, which is key for
enabling a graphically charted response. A typical channel
could be described as follows:
[ch id][name][status][flags][# of vars]

[var id][type][SI unit][SI prefix][# of elements]
...
[var id][type][SI unit][SI prefix][# of elements]

Additionally, each channel may have multiple ”annotations”
associated with it, which are key/value pairs of the format:
[id][key type][key value][pair type][pair value]

The purpose of annotations, is to enable metadata associations
with a given channel which are related to its functionality, but
not critical for the channels use. Possible use cases include
client-side input validation, UI widget selection, and logical
grouping for display. The use of annotations is expressly
designed to be open-ended and flexible.

B. Routing

The current routing implementation is loosely based on
RapidIO [18] transport layer, the proposed message header
format is:
[msgType][msgID][srcID][srcEP][dstID][dstEP][Msg Len][CRC8]

By leveraging RapidIOs flexible srcID/dstID approach, vir-
tually any network topology can be used. A separate Endpoint
field was added, to simplify having ”virtual” sources and
destinations within a device without the use of multiple device
IDs. A unique msgID is used to differentiate between multiple
messages on the go between the same two devices/endpoints.
Basic device discovery is planned to be in done by repeatedly
querying each device for its list of neighboring devices, and
then querying those neighbors.

VI. CONCLUSION

While developing a real-time web display and control sys-
tem for the GRIF-16 Digitizer, possible avenues of improve-
ment were discovered. Existing alternatives were researched
and it was decided that a new control system was required
to fill our needs, as here is an gap in the areas of self-
documenting, transport agnostic control protocols for embed-
ded systems. This control system is still being developed, but
the key features have been fleshed out, and beta implementa-
tions are currently being tested.

The new control system will allow much tighter coupling
between what is displayed on the web browser, and what
exists on the FPGA. It will also greatly reduce the amount
of code that needs to be written, both on the FPGA, and on
the client-side (Javascript). This should decrease the incident
rate of bugs, speed up development, and provide an easier,
more friendly experience to the end-user.

APPENDIX A
JAVASCRIPT METADATA EXAMPLE

{ label: ’Pole Cxn’, type: ’number_float’, min: 0.01, max:
1342177.28, step: 0.001, mscb: adc_channel[adcId].data
[’p_polec1’] },

{ label: ’Polarity’, type: ’radio’, desc: "Trigger Edge
Polarity", options: [

{label: ’Positive’, value: false},
{label: ’Negative’, value: true}

], mscb: $rootScope.adc_channel[adcId].data[’a_pol’] },

APPENDIX B
JAVASCRIPT TEMPLATE EXAMPLE

<td ng-if="::mscbVar.type == ’number’">
<input ng-disabled=’disabled’ layout-fill

style=’text-align: right’ type="number"
min={{::mscbVar.min}} max={{::mscbVar.max}}
step={{::mscbVar.step}}
ng-model=’mscbVar.mscb.d’
ng-change=’mscbVar.updateFn(

mscbVar.nodeId, mscbVar.mscb, mscbVar.mscb.
d)’>

</td>

ACKNOWLEDGMENT

Bryerton Shaw would like to thank the GRIFFIN collabo-
rators Adam Garnsworthy, Jenna Smith, and Chris Pearson
for their support, feature requests, and patience during the
development of the real-time web control system.

REFERENCES

[1] C. E. Svensson, A. B. Garnsworthy, Hyperfine Interact. 225 (1) (2014)
127.

[2] S. Ritt and P. Amaudruz, ”The MIDAS DAQ System”, Proc. of the Xth.
IEEE REAL TIME Conference, Beaune 97, pp 309-312. : Available at
http://midas.triumf.ca

[3] Available at https://www.altera.com/products/processors/overview.html
[4] Available at https://www.cesanta.com/products/mongoose-v2
[5] Available at https://www.altera.com/content/dam/altera-www/global/en

US/pdfs/literature/manual/mnl avalon spec.pdf
[6] Available at https://midas.psi.ch/mscb/
[7] Available at https://www.micrium.com
[8] Available at https://angularjs.org/
[9] Available at https://material.angularjs.org

[10] Available at https://midas.psi.ch/mscb/protocol/
[11] Available at https://www.altera.co.jp/ja JP/pdfs/literature/hb/nios2/

n2sw nii52012.pdf
[12] Available at https://midas.triumf.ca/MidasWiki/index.php/AJAX
[13] Available at http://zeromq.org/
[14] Available at http://coap.technology/
[15] Available at http://zeromq.org/results:0mq-tests-v03
[16] Available at https://www.amqp.org/
[17] Available at http://mqtt.org/
[18] Available at http://www.rapidio.org/

