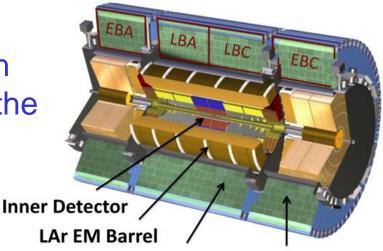
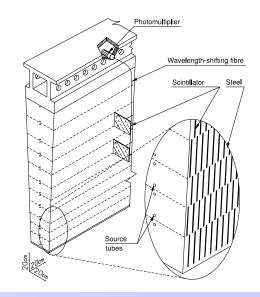


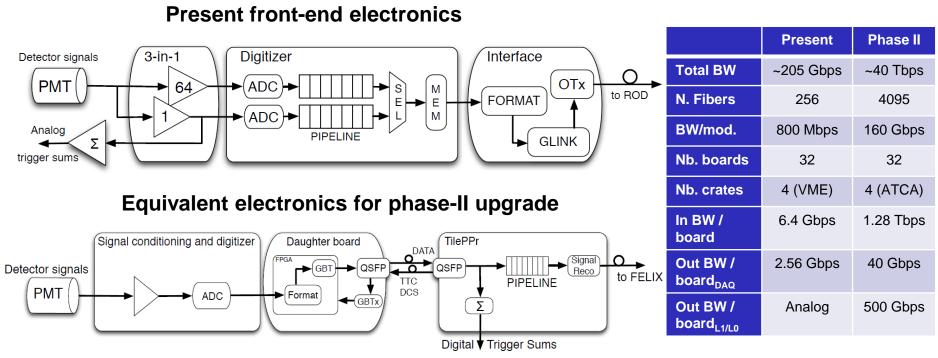
CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

Timing distribution and Data Flow for the ATLAS Tile Calorimeter Phase II Upgrade


Fernando Carrió Argos on behalf of the ATLAS Tile Calorimeter Group

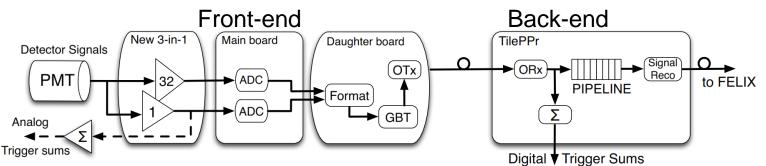

Tile Calorimeter

- Segmented calorimeter of steel plates and plastic scintillator which covers the most central region of the ATLAS experiment
 - 4 partitions: EBA, LBA, LBC, EBC
 - Each partition has 64 modules
 - One drawer hosts up to 48 Photo Multiplier Tubes (PMTs)
 - Light produced by a charged particle passing through a plastic scintillating tile is transmitted to the PMTs
 - Signals coming from PMTs are digitized and stored in the front-end electronics upon the reception of a Level-1 accept
 - Around 10,000 readout channels



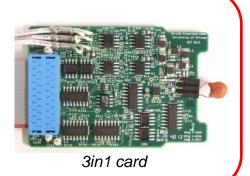
Tile Barrel Tile Extended Barrel

- LHC plans to increase the instantaneous luminosity by a factor 5-7 around 2027
- Phase II Upgrade: Major replacement of the readout electronics
 - New readout architecture to provide digital trigger information at low latency for L0/L1 trigger systems with improved granularity
 - Pipelines, de-randomizers memories, TTC distribution moved to the back-end electronics
 - Higher radiation tolerance of electronics
 - Higher reliability and robustness of electronics reducing single point failures


IEEE Real Time 2016 - Padova, Italy

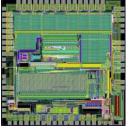
Demonstrator project and plans

- Evaluation the new readout schema and trigger system interfaces
 - TileCal demonstrator module is operative in our labs at CERN
- Plans for the demonstrator project
 - Test beam in 2015 and 2016
 - Possible insertion of one demonstrator module into the ATLAS at the end of 2016
 - Insertion of more modules during LS2(2019-2020) depending of the demonstrator results and performance
- Readout architecture for Phase II but keeping backward compatibility with the current system
 - Tile PreProcessor will interface the current TTC system (or FELIX) with the new frontend electronics
 - Back-end electronics will send Level 1 selected events to the current RODs
 - Provide analog trigger signals to the present trigger system



FE- Very front-end boards

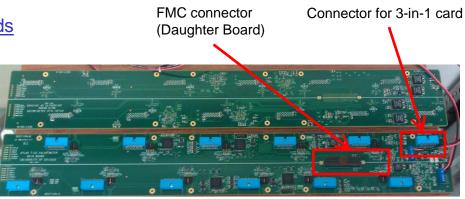
- 3-in-1 Cards: Based on current 3-in-1
 - Provides 3 analog signals: 2 x LG + 1 x HG
 - Calibration circuitry
 - Improved noise and linearity
 - Design ready and qualified
 - Selected option for the Demonstrator as this option provides analog signals to the current trigger system


- FATALIC: Combined ASIC solution
 - Current conveyor and three shaping stages
 - 3 different gain ratios (1, 8, 64)
 - Integrated 12-bit pipelined ADCs
 - Tested during the last Test Beam \rightarrow Shows good performance

FATALIC analog output, evt 19

- **QIE:** Charge Integrator and Encoder
 - Current splitter with four ranges and gated integrator
 - 6-bit flash ADC at 40 MHz operation
 - 17 bit dynamic range in 10 bits
 - Integration in a FEB and DAQ development during the Q2 of 2016
 - To be tested during the next Test Beam (June 2016)

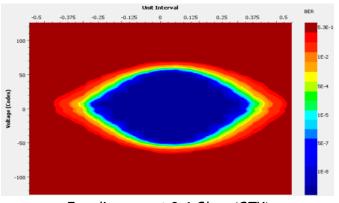
QIE chip


Daughter Board + Main Board

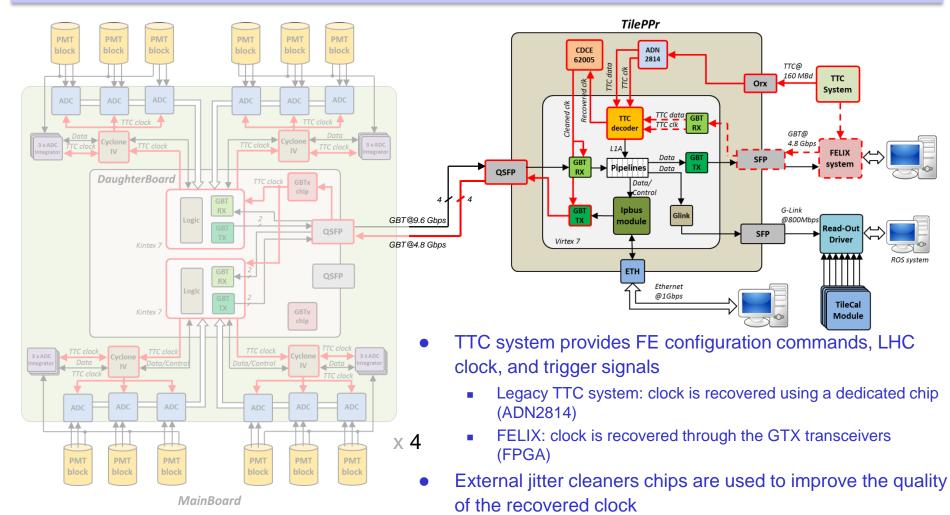
- High speed communication between front- and back-end electronics
 - Reception of timing and control commands
 - Transmission of digitized data to the BE
- Daughter Board v4
 - 2 Xilinx Kintex 7 FPGA
 - 2 QSFP module (2 x 40 Gbps)
 - 2 GBTx chips
 - One GBTx per QSFP+
 - Allows remote programming and operation from the BE
- Main Board
 - Demonstrator → Version for modified 3-in-1 cards
- Digitize signals coming <u>from 12 modified 3-in-1 cards</u>
 - 12 bits, 40 MSPs
- Digital control of the front-end boards using Altera Cyclone IV
- Routes the digitized data from the ADCs to the DB
 - 400 pin FPGA Mezzanine Connector (FMC)
 - LVDS at 560 Mbps per ADC
- Low power voltage distribution
 - Divided into two halves for redundancy

Daughter Board v4

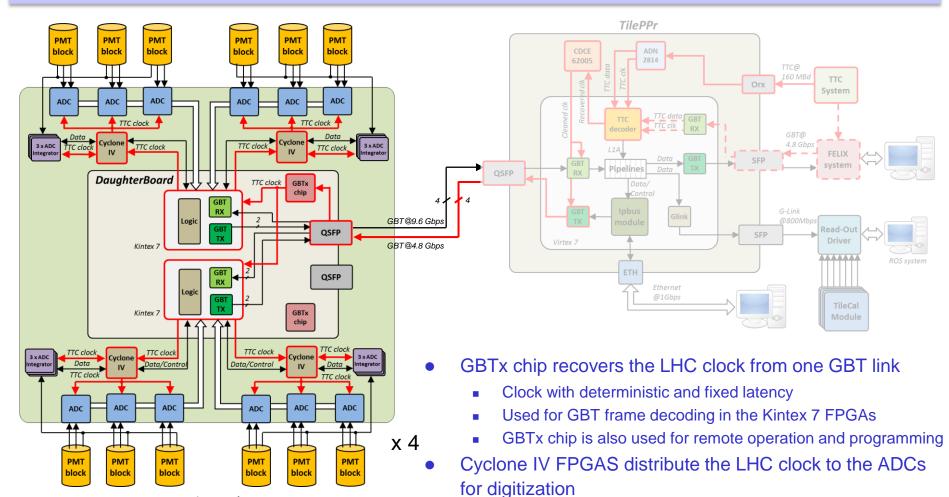
Main Board for 3-in-1 cards


TilePPr prototype

- Represents 1/8 of the final TilePPr module for the ATLAS Phase II Upgrade
- Double mid-size AMC form factor
 - ATCA carrier / µTCA
- Virtex 7 + 4 QSFPs (Readout)
 - Readout and operation of 1 complete TileCal module
 - Timing and command distribution to the FE
 - Interface with FELIX system
 - Energy and time reconstruction algorithms
- Kintex 7 + Avago MiniPOD TX (Trigger)
 - Evaluation of the interfaces with trigger systems and latencies between systems
 - Trigger data preprocessing algorithms
- DDR3 memories, FMC, GbE ports, PCIe, ...
- System has been successfully tested
 - BERT showed no errors during 115 hours
 - 5.10⁻¹⁷ for a confidence level of 95%
 - 16 links at 9.6 Gbps with PRBS31 pattern

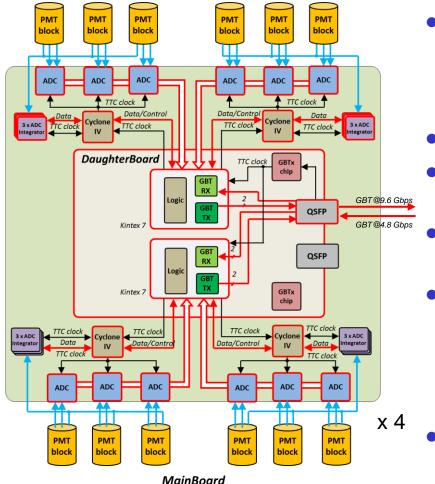

TilePPr prototype

Eye diagram at 9.6 Gbps (GTX)



- Clock is sent to the FE embedded with the data/commands
 - Downlink @ 4.8 Gbps, 4 x GBT links
 - Transceivers configured in deterministic and fixed latency mode

Timing FE - Demonstrator

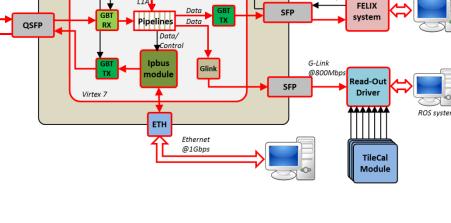

- Capability of phase shifting in fine steps
- Commands are received through the other three GBT links in the downlink 4.8 Gbps

MainBoard

Data flow FE - Demonstrator

- Front-end electronics transmits the digitized data to the back-end electronics for every bunch crossing
 - 4 GBT links @ 9.6 Gbps
- No memory buffers in the front-end
- Each Kintex 7 FPGAs deserializes the data coming from 6 ADCs at 560 Mbps
- Event data is packed in a GBT frame with other monitoring info (HV, FE status, etc)
- Commands are decoded in the Kintex 7 FPGA and distributed to the MainBoard
 - Front-end boards settings
 - ADC configuration
 - HV electronics configuration
 - Analog sums of the low gain signals coming
 from the PMTs are transmitted to the current
 trigger system for decision
 - In order to keep backward compatibility with the legacy trigger system

Data flow BE - Demonstrator

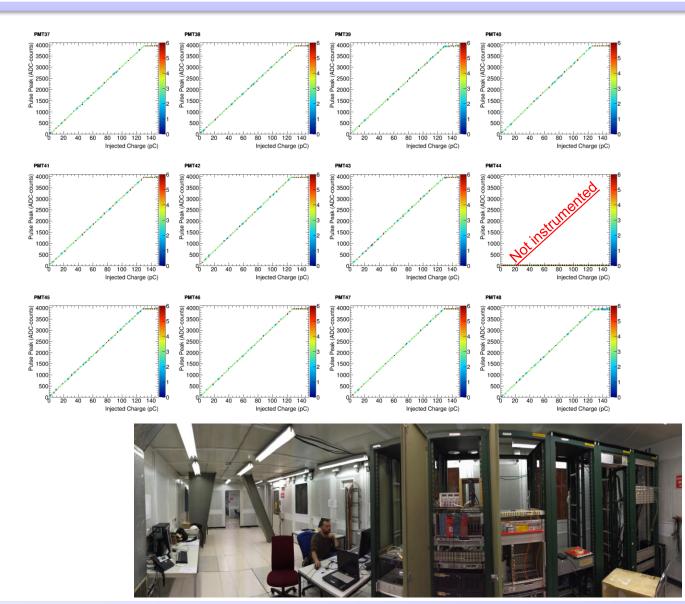

ТТС@ 160 MBa

> GBT@ 4.8 Gbps

ттс

System

- Continuous decoding and reception of data TilePPr CDCE ADN 4 GBT links @9.6 Gbps per DaughterBoard 2814 62005 Orx 12 bits x 12 channels x 2 gains @ 40 MHz TTC data Data is stored in circular pipelines Samples with 2 gains x 48 channels Pipelines Data QSFP (1 TileCal module) Data/ Control 12.5 µs depth memories Ipbus module Selected event data is transmitted to the Virtex 7
 - readout systems after a Level-1 trigger signal is received
- Three independent readout paths
 - FELIX system prototype: Phase II
 - 1 GBT link@4.8Gbps
 - 32 samples x 2 gains @ ~20 kHz
 - Legacy Read-Out Drivers: Backward comp.
 - 1 G-Link@800 MBps
 - 7 samples x 1 gain @100kHz
 - IPbus protocol via Ethernet: Monitoring
 - 32 samples x 2 gains



- Remote control / monitoring
 - Front-end boards configuration
 - High Voltage electronics
 - FPGAs status
 - Temperatures

Charge injection linearity test

- R&D projects for ATLAS Phase II Upgrade includes the implementation of a new readout architecture:
 - Complete redesign of the front-end and back-end electronics for Phase II Upgrade
 - New trigger and readout strategies with new trigger algorithms
 - No buffers in the front-end electronics → all data will be readout at LHC frequency
 - LHC clock is distributed embedded with the downlink data (GBT@4.8 Gbps)
- Tile Demonstrator electronics project
 - Functional prototypes of front- and back-end electronics
 - Implemented redundancy in all front-end elements
 - Possibility of installing a TileCal demonstrator at the end of this year

Thank you