High Speed Continuous DAQ System for Readout of the ALICE SAMPA ASIC

Arild Velure and Ganesh Tambave
High-Speed Continuous DAQ System for Readout of the ALICE SAMPA ASIC

Ganesh Tambave and Arild Velure
Department of Physics and Technology, University of Bergen, Bergen, Norway
For the ALICE collaboration

ALICE Experiment and Upgrade
- ALICE experiment under the influence of heavy ions (Pb-Pb, p-Pb) at collisions at 2.76 TeV, to characterize the strongly interacting matter at extreme energy-density, where Quark-Gluon Plasma (QGP) is produced.
- ALICE has successfully completed Run1 (2010-2013).
- Run2 is in progress (2015-2018).
- The ALICE TPC upgrade project (DIP, ITH, BPTC) will be completed in 2020.
- The ALICE TPC Tracker Chamber will be upgraded to GEM readout technology and a parametrised readout system is being accommodated for the higher collision rates (200-400 Hz) during Run2.

High-Speed Data Acquisition System

- SAMPA Test Framework - DAQ System
 - Firmware design for system-on-chip board
 - SAMPA Controller
 - Control program for the SAMPA cards
 - SAMPA Programmer
 - Data acquisition and on-line monitoring using ROOT framework.

- SAMPA Detector - DAQ System
 - Data acquisition for the calorimeter and muon system.
 - Data transfer to the SAMPA cards.
 - SAMPA Cards
 - Data acquisition and on-line monitoring using ROOT framework.

- SAMPA Communication
 - Software environment to control and configure the DAQ and the SAMPA cards.
 - User-friendly interface for remote control.
 - Simplified configuration:
 - Clock configuration on the fly.
 - Data flow handling.
 - Online auto information.

- SAMPA Analyser
 - Signal data acquisition with the SAMPA board.
 - Monitor data:
 - Raw data:
 - Data transfer and data processing.
 - Data flow handling.
 - Offline data:
 - Store data in ROOT file.
 - Store data in ROOT file, offline analysis using ROOT data.
 - Monitor and analysis of multiple channels in parallel.

Test Setup and Analysis
- Performance tests of the complete SAMPA system were carried out with charge-generating data.
- Signal generator.
- GEM detector chamber.
- Event reconstruction (amplitude, time) of the SAMPA output signals was done by applying following methods:
 - Peak search.
 - Integrating samplers in the signal region.
 - Raising error following function
 \[y = A \left(1 - e^{-x/B} \right) \]

Where, \(A \) is a peak, \(x \) is the shaping order of the amplifier, the waveform amplitude is defined by \(B \). The resolution is \(A \) in the timing, and \(1/e \) in time of the waveform.

Results
- Gain linearity.
- Charge-shape stability.
- F pedestal.
- Timing linearity.

E = 5 GeV (5.5 MeV) energy spectrum - Signal gives better result
- SAMPA trigger gain 0.25 MeV/NC.