PLAS: A 32-channel, dead time-less analog memory ASIC for the TRACE detector

R. J. Aliaga, V. Herrero, S. Capra, J. A. Dueñas, A. Pullia, A. Gadea, D. Mengoni

Contact: raalva@ific.uv.es
Classical Analog Memory: SCA (Switched Capacitor Array)

- Capacitors charged consecutively, **high write frequency**
- On trigger, SCA is stopped and contents are held
- **Slow read frequency**, voltage is digitized externally
- SCA is replicated for each input channel
Problem: SCA cannot be rewritten until read out.

Low read frequency implies very long dead time.

Existing solutions: partial readout, replication.

Write: close w and f. Read: close r.

Diagram of a switched capacitor array (SCA) with nodes C_1, C_2, C_3, ..., C_L, and switches a_1, b_1, a_2, b_2, a_3, b_3, a_4, b_4.
New Analog Memory Structure: PLAS (PipeLined Asymmetric SCA)

Proposed solution: Split the memory into two sequential SCA stages

- No deadtime
- Decreased number of capacitor cells
New Analog Memory Structure: PLAS (PipeLined Asymmetric SCA)

Stage 1: Many short SCAs for **pre-trigger** samples

- One per input channel
- Continuous capture until trigger, then stop
New Analog Memory Structure: PLAS (PipeLined Asymmetric SCA)

Stage 2: Few **long** SCAs for **post-trigger** samples
- Shared between all inputs
- Idle until trigger, then start capturing
- Include **buffer SCA** where contents of stage 1 are copied
Come and see!

2nd poster session
Poster no. 42

Friday 10 Jun
11:00 – 12:30