The monitoring board for the calibration system of the g-2 experiment

A. Anastasioa, A. Boianoa, P. Di Meoa, R. Di Stefanoa,c, O. Escalantea,b, M. Iacovaccia,b, F. Marignetti a,c, S. Mastroiannia

aINFN Napoli, bUniversità “Federico II” di Napoli, Italy, cUniversità di Cassino, Italy
Calorimeter gain fluctuations and monitoring at the 10^{-4} level (both during in-beam & out of beam)

Calibration system: diode Laser and distribution system transmission
- 6 lasers Picoquant (750 pJ @ 405 nm) / Average Power (@ 40 MHz): 28 mW
- 24 diffusers
- Monitor system

Source monitor (signal input: ~150 pJ/pulse~3\times10^8 \gamma)
- 2 PIN diodes and readout electronics
- 1 PMT with Am/NaI pulser
- Light mixing chamber

Local monitor (signal input: ~0.01 pJ/pulse~10^4 -10^5 \gamma)
- 2 PMT

Systematics are measured with reference to a Am/NaI “pulser” with rate of ~10Hz \rightarrow need ~ 3 hours for 0.01% statistical accuracy

Required value at the output of each crystal 0.01 pJ/pulse (el. 2 GeV)
Source Monitor electronics

CSP board:
- charge sensitive preamplifier with 800mV/pC and a noise of 0.7 mV FWHM
- charge injection electrode for test purposes
- temperature sensor at 0.1°C

MB board:
- power supplies with EMCO modules & feedback
 ✓ Bias for PIN diodes /PMT
- stabilize the sensors (PIN/PMT) and electronics
- provides the calibration signal (DAC)
- time measurements for each pulse
- charge converted with 14 bits ADC

Test results

Conclusions

- The Source Monitor system allows the containment of the systematic contributions due to gain fluctuations at sub-per mil level on the beam cycle.
- The presence of a CSP board guarantees an high flexibility and it can be customized for PIN/PMT readouts
- The MB module builds a frame for each channel and sends it to the following DAQ level
- Linearity tests have been done; temperature and bias measurements are used for corrections
- Self-calibration and efficiency measurements can be done by a charge injection