Beam Synchronous Timing

BE-CO-HT status and plans

Javier Serrano Geneva, 17.10.2013

- Standard module supported by BE-CO-HT.
- We cover: hardware, gateware, driver, library and test program.
- Migration to Linux 64 bit well underway. Deployment expected before end of LS1.
- No plans to modify our level of support.

- Awkward connection between BST and GMT.
- Two different networks needed for LHC BST: ring 1 and ring 2.
- No phase compensation.

Potential issues looking at LS2

- Some obsolete equipment with unclear (to us) evolution plans: big laser box, encoding boards, TTCrx chip...
- Question open on whether the TTC physical layer can cope with the variations of RF frequency in SPS.

One more trick in our bag of tricks

- Input any reasonably stable (FM bandwidth: ~ 20 kHz) clock signal,
- Digitize it and broadcast over a synchronous network,
- Reproduce the original signal at any number of receivers,
- Share the network with other applications.

Distributed DDS

Distributed DDS

- Use a fast DAC driven by a DDS as a tunable oscillator,
- Put it inside a PLL, referenced with the clock that we want to transmit,
- Postprocess, encode and broadcast the oscillator tuning values over the WR network,
- Drive any number of identical DDS cores with the received data stream,
- Since WR ensures phase-compensated 125 MHz reference clock at every node in the network, slave DACs will produce a copy of the master's clock.

Test system

2 SPEC cards with 2 DDS FMC mezzanines.

http://www.ohwr.org/projects/fmc-dac-600m-12b-1cha-dds/wikihttp://www.ohwr.org/projects/spec

- Point-to-point link.
- Test frequency: 10 MHz cesium standard, loop bandwidth: 10 kHz, broadcast rate: 110 kHz.
- Encoder PLL performance: 6 ps rms jitter (10 Hz 5 MHz),
 -110 dBc/Hz noise floor (@ 100 Hz)
- Recovered clock: 8.5 ps rms jitter.
- Significant part of the jitter likely comes from buggy PCB design (1st prototype)

Test system

Performance

Performance

- Implement point-to-multipoint transmission and simultaneous encoding of multiple clocks,
- Reduce data bandwidth requirements better encoding (prediction-correction or jitter-bound lossy compression),
- Optimize jitter: fine-tune PLL filters, deal with PCB issues, check performance with an additional cleaner PLL.

A possible migration plan

Summary

- We plan to maintain the level of support on the BST Master side, along with an imminent migration to Linux.
- Not clear yet what we should do for LS2. Some ideas on how to transmit RF using White Rabbit:
 - With phase compensation.
 - In a more frequency-agile way.
 - With more than one RF possible per link.
- Your input and collaboration is very welcome.