Beam Synchronous Signals from PS RF Beam Control as Observation Triggers

H. Damerau, R. Steinhagen, J. Emery

BI Technical Board

17 October 2013

Introduction

- Significant change of revolution frequency in PS
 - 10% change for protons
 - Factor of 2.7 for Pb54+
 - Phases of beam synchronous signals depend on delays
- RF manipulations change number of bunches or position of first bunch
 - No marker to specific bunch
- Beam synchronous revolution frequency (TREV) or h = 8 (TRF)
 - Reproducible phase offsets from cycle to cycle
- LHC-type beams after synchronization on flat-top
 - All frequencies essentially constant
 - Bucket numbering with respect to $f_{
 m rev}$ -marker from SPS

Distributed beam synchronous signals

- PS revolution frequency (TREV)
 - → Square wave, duty cycle depending on source/beam control
 - → Derived from RF to cavities during acceleration
 - → Derived from external source (SPS/synthesizer) close to ejection
 - Phase with respect to beam depending on:
 - a) User (single bunch, multi-bunch LHC-type beam, etc.)
 - b) RF manipulation, synchronization, ejection bucket number
- PSh = 8 (TRF)
 - Square wave, ~50% duty cycle
 - Generated mainly for triggers to beam transfer elements
- 'Fiducial' frequency for beam transfer (TFID)
 - ~20 ns marker, fast rise time
 - Common sub-multiple of $f_{
 m rev}$ for sending and receiving machine
 - $f_{\text{rev,SPS}}$ for PS \rightarrow SPS, $f_{\text{rev,PS}}/3$ for PS \rightarrow AD
- \rightarrow Convention for extraction of LHC-type beams: 1st bunch at fixed phase with respect to $f_{\text{rev,SPS}}$ marker

Fixed displays close before ejection

- → TFID RF train valid for the last ~15-20 ms (LHC-type beams)
- → Trigger for all 'fixed' observations (logging, satellite analysis)?
- \rightarrow Requires extra cable connection blg. 353 or 354 \rightarrow 152 (?)

→ For all other observations (Tomoscope, BSM, etc.) along cycle: TREV + software based bunch analysis sufficient?

Wire scanners

- Bunch-by-bunch wire scanner measurements need beam/bunch synchronous trigger
- Measurement time fixed to ~6 ms before ejection
- Use of electronics from LHC for tests
 - → Requires 40 MHz RF in building 368 (next to 353)
- → Proposal: Distribute beam synchronous 40 MHz (+TFID?)
 - Derived from drive signal to 40/80 MHz cavities
 - Available during last ~15-20 ms before extraction
 - Bunches at reproducible phase from cycle to cycle
 - Includes frequency changes for bump compensation

Issue with $\Delta f/f \approx 2.10^{-5}$ frequency excursion for wire scanner acquisition?

