Symmetries in P and S wave for $B \rightarrow K^{*} \mu \mu$

Joaquim Matias

Universitat Autonoma de Barcelona
LHCb workshop Edinburgh - May 2015

Outline of the talk

- The angular distribution: P+S wave. S-wave observables.
- Symmetries and counting.
- Structure of the relations in P and S wave sector.
- Phenomenological implications.
- Conclusions.

Angular Distribution

The differential decay rate of $B \rightarrow K \pi \ell^{+} \ell^{-}$receives contributions from:

- P-wave decay $B \rightarrow K^{*}(\rightarrow K \pi) \ell^{+} \ell^{-}$
- S-wave decay $B \rightarrow K_{0}^{*}(\rightarrow K \pi) \ell^{+} \ell^{-}$with K_{0}^{*} a broad scalar resonance

$$
\frac{d^{5} \Gamma}{d q^{2} d m_{K \pi}^{2} d \cos \theta_{K} d \cos \theta_{\ell} d \phi}=W_{P}+W_{S}
$$

$\Rightarrow W_{P}$ contains the pure P -wave contribution.
$\Rightarrow W_{S}$ contains the pure S-wave exchange and S-P interference.

Angular Distribution (2)

Structure:

- $B \rightarrow K^{*} \ell^{+} \ell^{-}$described by 6 complex amplitudes $A_{\|, \perp, 0}^{L, R}\left(m_{\ell}=0, A_{S}=0\right)$
- $B \rightarrow K_{0}^{*} \ell^{+} \ell^{-}$described by 2 complex amplitudes $A_{0}^{\prime L, R}$

These amplitudes are multiplied by a $B W_{i}\left(m_{K_{\pi}}^{2}\right)$ with $i=K^{*}, K_{0}^{*}$ describing the propagation of the K^{*} and K_{0}^{*} meson.

A bit more on the structure. W_{P} is well known and contains $J_{i}\left(q^{2}, m_{K \pi}\right)$ while

$$
\begin{aligned}
& W_{S}=\frac{1}{4 \pi}\left[\tilde{\jmath}_{1 a}^{c}+\tilde{J}_{1 b}^{c} \cos \theta_{K}+\left(\tilde{J}_{2 a}^{c}+\tilde{J}_{2 b}^{c} \cos \theta_{K}\right) \cos 2 \theta_{\ell}+\tilde{J}_{4} \sin \theta_{K} \sin 2 \theta_{\ell} \cos \phi\right. \\
&\left.+\tilde{J}_{5} \sin \theta_{K} \sin \theta_{\ell} \cos \phi+\tilde{J}_{7} \sin \theta_{K} \sin \theta_{\ell} \sin \phi+\tilde{J}_{8} \sin \theta_{K} \sin 2 \theta_{\ell} \sin \phi\right]
\end{aligned}
$$ we assume lepton masses to zero (for simplicity).

S-wave observables

The S-wave observables are defined as

$$
\begin{array}{ll}
A_{S}=\frac{8}{3} \frac{\tilde{\jmath}_{1 b}^{c}+\overline{\tilde{J}}_{1 b}^{c}}{\Gamma_{\text {full }}^{\prime}+\bar{\Gamma}_{\text {full }}^{\prime}}, & A_{S}^{\mathrm{CP}}=\frac{8}{3} \frac{\tilde{\jmath}_{1 b}^{c}-\overline{\tilde{\jmath}}_{1 b}^{c}}{\Gamma_{\text {full }}^{\prime}+\bar{\Gamma}_{\text {full }}^{\prime}}, \\
A_{S}^{i}=\frac{4}{3} \frac{\tilde{\jmath}_{i}+\overline{\tilde{J}}_{i}}{\Gamma_{\text {full }}^{\prime}+\bar{\Gamma}_{\text {full }}^{\prime}}, & A_{S}^{i \mathrm{CP}}=\frac{4}{3} \frac{\tilde{\jmath}_{i}-\tilde{\tilde{J}}_{i}}{\Gamma_{\text {full }}^{\prime}+\bar{\Gamma}_{\text {full }}^{\prime}},
\end{array}
$$

$i=4,5,7,8$. The total differential decay width $\Gamma_{\text {full }}^{\prime}$ and F_{S} are

$$
\Gamma_{\text {full }}^{\prime}=\Gamma_{K^{*}}^{\prime}+\Gamma_{K_{0}^{*}}^{\prime}, \quad F_{S}=\frac{\Gamma_{K_{0}^{*}}^{\prime}+\bar{\Gamma}_{K_{0}^{*}}^{\prime}}{\Gamma_{\text {full }}^{\prime}+\bar{\Gamma}_{\text {full }}^{\prime}}
$$

One can reexpress W_{S} in terms of this set of observables.
In the following and for simplicity neglect CPV contributions (bar observables) exact expressions can be found in [L. Hofer, J.M'15].

Symmetries of the angular distribution:

The angular distribution of $B \rightarrow K^{*}(\rightarrow K \pi) \mu^{+} \mu^{-}$exhibit symmetries:
\Rightarrow Transformation of its amplitudes $A_{\perp, \|, 0}^{L, R}$ leaving invariant the distribution.

- Number of independent observables given a set of amplitudes and generators of symmetry.
- Minimal number of observables \rightarrow a complete basis.
- Provide consistency relations among observables.
- Not any combination of transversity amplitudes $A_{\perp, \|, 0}^{L, R}$ defines an observable. For instance,

$$
A_{T}^{1}=-2 \frac{\operatorname{Re}\left(A_{\|} A_{\perp}^{*}\right)}{\left|A_{\perp}\right|^{2}+\left|A_{\|}\right|^{2}}
$$

is "gauge dependent" and cannot be extracted from the distribution.

- "Amplitude analysis approach" uses/has all symmetries embedded.

Counting

The counting of degrees of freedom for the P -wave sector ALONE shows:

$$
n_{\text {Observables }}^{P-\text { wave }}=n_{J}-n_{\text {relations }}=2 n_{A}-n_{\text {symmetries }}^{P}
$$

Case	Coeff. J_{i}	Amplitudes	Rel.	Symmetries	Observables
$m_{\ell}=0, A_{S}=0$	11	6	3	4	8
$m_{\ell}=0$	11	7	2	5	9
$m_{\ell}>0, A_{S}=0$	11	7	1	4	10
$m_{\ell}>0$	12	8	0	4	$\mathbf{1 2}$

All symmetries (massive and scalars) were found explicitly later on.
[JM, Mescia, Ramon, Virto'12]
ADDING the S-wave sector:

$$
n_{\text {Observables }}^{S-\text { wave }}=2 n_{A}-n_{\text {symmetries }}^{P+S}-n_{\text {Observables }}^{P}=4
$$

Case Coeff. J_{i}, \tilde{J}_{i} Amplitudes Rel. Symmetries Observables

$m_{\ell}=0, A_{S}=0$	$11+8$	$6+2$	$3+4$	4	$8+4$

Natural language to make explicit all those symmetries is to introduce:
$n_{\|}=\binom{A_{\|}^{L} B W_{P}}{A_{\|}^{R *} B W_{P}^{*}}, n_{\perp}=\binom{A_{\perp}^{L} B W_{P}}{-A_{\perp}^{R *} B W_{P}^{*}}, n_{0}=\binom{A_{0}^{L} B W_{P}}{A_{0}^{R *} B W_{P}^{*}}, n_{S}=\binom{A_{0}^{\prime L} B W_{S}}{A_{0}^{\prime R *} B W_{S}^{*}}$

All P-wave coefficients can be expressed in terms of them:

$$
\begin{aligned}
\mathrm{J}_{1 \mathrm{~s}}=3 \mathrm{~J}_{2 \mathrm{~s}} & =\frac{3}{4}\left(\left|n_{\perp}\right|^{2}+\left|n_{\|}\right|^{2}\right), \quad \mathrm{J}_{1 \mathrm{c}}=-\mathrm{J}_{2 \mathrm{c}}=\left|n_{0}\right|^{2} \quad J_{3}=\frac{1}{2}\left(\left|n_{\perp}\right|^{2}-\left|n_{\|}\right|^{2}\right), \\
J_{4} & =\frac{1}{\sqrt{2}} \operatorname{Re}\left(n_{0}^{\dagger} n_{\|}\right), \quad J_{5}=\sqrt{2} \operatorname{Re}\left(n_{0}^{\dagger} n_{\perp}\right), \quad J_{6 s}=2 \operatorname{Re}\left(n_{\perp}^{\dagger} n_{\|}\right), \\
J_{7} & =-\sqrt{2} \operatorname{lm}\left(n_{0}^{\dagger} n_{\|}\right), \quad J_{8}=-\frac{1}{\sqrt{2}} \operatorname{lm}\left(n_{0}^{\dagger} n_{\perp}\right) \quad J_{9}=-\operatorname{lm}\left(n_{\perp}^{\dagger} n_{\|}\right)
\end{aligned}
$$

Modulus and Real and Imaginary bilinear scalar products of n_{i}

Also S-wave can also be expressed:

$$
\begin{aligned}
\tilde{\mathrm{J}}_{1 \mathrm{a}}^{\mathrm{c}}=-\tilde{\mathrm{J}}_{2 \mathrm{a}}^{\mathrm{c}} & =\frac{3}{8}\left|n_{S}\right|^{2}, \quad \tilde{\mathrm{~J}}_{1 \mathrm{~b}}^{\mathrm{c}}=-\tilde{\mathrm{J}}_{2 \mathrm{~b}}^{\mathrm{c}}
\end{aligned}=\frac{3}{4} \sqrt{3} \operatorname{Re}\left(n_{S}^{\dagger} n_{0}\right),
$$

- Exactly same symmetries for P and S wave sector.
- Only 4 out of these $8 \tilde{J}_{i}$ are independent.
- We have found 2 (P-wave) + 2 (S-wave) relations out of 7.
\Rightarrow Three relations lacking!

Symmetries

A symmetry of the angular distribution will be a unitary transformation
$n_{i}^{\prime}=U n_{i}=\left[\begin{array}{ll}e^{i \phi_{\llcorner }} & 0 \\ 0 & e^{-i \phi_{\mathrm{R}}}\end{array}\right]\left[\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]\left[\begin{array}{rr}\cosh i \tilde{\theta} & -\sinh i \tilde{\theta} \\ -\sinh i \tilde{\theta} & \cosh i \tilde{\theta}\end{array}\right] n_{i}$.
U defines the four symmetries of the massless angular distribution:

- two global phase transformations ($\phi_{\mathbf{L}}$ and $\phi_{\mathbf{R}}$),
- a rotation θ among the real and imaginary components of the amplitudes independently.
- another rotation $\tilde{\theta}$ that mixes real and imaginary components of the transversity amplitudes.

How to obtain the lacking 3 relations?

There are basically two possible procedures:
I) Since $n_{\|}$and n_{\perp} span the space of complex 2-component vectors:

$$
n_{i}=a_{i} n_{\|}+b_{i} n_{\perp}, \quad i=0, S
$$

Contracting with $n_{\|}$and n_{\perp} we get a system of linear equations $\rightarrow a_{i}, b_{i}$.
Using n_{0}, n_{S} in terms of $n_{\|}, n_{\perp}$ to calculate $\left|n_{0}\right|^{2},\left|n_{S}\right|^{2}, n_{0}^{\dagger} n_{S}$, one finds

$$
\begin{aligned}
& \left|n_{0}\right|^{2}=a_{0}\left(n_{0}^{\dagger} n_{\|}\right)+b_{0}\left(n_{0}^{\dagger} n_{\perp}\right), \quad(\mathbf{1} \text { st relation : } \mathbf{P}-\text { wave }) \\
& \left|n_{S}\right|^{2}=a_{S}\left(n_{S}^{\dagger} n_{\|}\right)+b_{S}\left(n_{S}^{\dagger} n_{\perp}\right), \quad(\mathbf{1} \text { st relation : } \mathbf{S}-\text { wave }) \\
& n_{0}^{\dagger} n_{S}=a_{S}\left(n_{0}^{\dagger} n_{\|}\right)+b_{S}\left(n_{0}^{\dagger} n_{\perp}\right) \quad(\text { 2nd relation : } \mathbf{S} \text { - wave })
\end{aligned}
$$

These are the 3 extra relations to be expressed in terms of J_{i}, \tilde{J}_{i}.
2) Solve the system of A_{i} in terms of J_{i}, \tilde{J}_{i} and these three same equations appear.

Structure of the relations

The three relations has a interestingly similar structure:

- P-wave in a compact form (not including CPV observables for simplicity)

$$
\begin{aligned}
& P_{2}=+\frac{1}{2}\left[\left(P_{4}^{\prime} P_{5}^{\prime}+\delta_{1}\right)+\frac{1}{\beta} \sqrt{\left(-1+P_{1}+P_{4}^{\prime 2}\right)\left(-1-P_{1}+\beta^{2} P_{5}^{\prime 2}\right)+\delta_{2}+\delta_{3} P_{1}+\delta_{4} P_{1}^{2}}\right] \\
& \text { where } \delta_{1,2,3}=f\left(P_{4,5}^{\prime}, P_{3}, P_{6,8}^{\prime}\right) \text { and } \delta_{4}=0 \text { (if no CPV) }
\end{aligned}
$$

- First S-wave (quadratic and same structure) is identical to the P -wave relation with replacements:

$$
P_{4}^{\prime} \rightarrow \frac{2}{\alpha} A_{S}^{4}, \quad P_{5}^{\prime} \rightarrow \frac{1}{\alpha} A_{S}^{5}, \quad P_{6}^{\prime} \rightarrow-\frac{1}{\alpha} A_{S}^{7}, \quad P_{8}^{\prime} \rightarrow-\frac{2}{\alpha} A_{S}^{8} \quad \alpha=\sqrt{3 F_{T} F_{S}\left(1-F_{S}\right)}
$$

where all ratios are $\leq \sqrt{2}$.

- Second S-wave is linear, but combined with the previous ones can be written as the P-wave relation with the replacements:

$$
\begin{aligned}
& P_{4}^{\prime} \rightarrow \mathcal{P}_{4}^{\prime}=2 \omega A_{S}^{4}+\rho P_{4}^{\prime} \quad P_{5}^{\prime} \rightarrow \mathcal{P}_{5}^{\prime}=\omega A_{S}^{5}+\rho P_{5}^{\prime} \\
& P_{6}^{\prime} \rightarrow \mathcal{P}_{6}^{\prime}=-\omega A_{S}^{7}+\rho P_{6}^{\prime} \quad P_{8}^{\prime} \rightarrow \mathcal{P}_{8}^{\prime}=-2 \omega A_{S}^{8}+\rho P_{8}^{\prime}
\end{aligned}
$$

where ω, ρ are functions of F_{L}, F_{S}, A_{S}.

Phenomenological implications: P-wave relation

\Rightarrow The first exact relation (no scalars) establishes a consistency relation between the 6 independent $P_{i}+$ a seventh redundant P_{3} (including the $P_{i}^{C P}$). Under the hypothesis: No New Physics in weak phases of Wilson coefficients. Then
$P_{2}^{\text {derived }}=\frac{1}{2}\left[P_{4}^{\prime} P_{5}^{\prime}+\frac{1}{\beta} \sqrt{\left(-1+P_{1}+P_{4}^{\prime 2}\right)\left(-1-P_{1}+\beta^{2} P_{5}^{\prime 2}\right)}\right]$
[N. Serra, J.M.'14] In $3 \mathrm{fb}^{-1}$ slight shift up of P_{2} and down of P_{5}^{\prime} as required.

$1 \mathrm{fb}^{-1}$ data: Difference of 2σ on third bin between $P_{2}^{\text {measured }}$ and $P_{2}^{\text {derived }}$
$3 \mathrm{fb}^{-1}$ data move to increase agreement to $1.3 \sigma[4,6]$ and $1.1 \sigma[6,8]$ between $P_{2}^{\text {measured }}$ and $P_{2}^{\text {derived }}$

Symmetries and P-wave

Relation between $P_{4,5}^{\prime}$ at q_{0}^{2} and at q_{1}^{2} of P_{2}

- At the zero of P_{2} called q_{0}^{2}

$$
P_{4}^{\prime 2}\left(q_{0}^{2}\right)+\beta^{2} P_{5}^{\prime 2}\left(q_{0}^{2}\right)=1+\eta\left(q_{0}^{2}\right)
$$

where $\eta\left(q_{0}^{2}\right) \rightarrow 0$ if $P_{1} \rightarrow 0$ (NO RHC)
Example: $q_{0}^{2 S M} \simeq 4 \mathrm{GeV}^{2}$. In the SM I would get in a $1 \mathrm{GeV}^{2}$ bin around the zero:

$$
\begin{gathered}
\left\langle P_{4}^{\prime}\right\rangle_{[3.5,4.5]}=0.714,\left\langle P_{5}^{\prime}\right\rangle_{[3.5,4.5]}=-0.674 \\
\Rightarrow\left[P_{4}^{\prime 2}+P_{5}^{\prime 2}\right]_{[3.5,4.5]}=0.96
\end{gathered}
$$

If you miss the right position of the zero you get:
$\left[P_{4}^{\prime 2}+P_{5}^{\prime 2}\right]_{[2.5,3.5]}=0.37$ and
$\left[P_{4}^{\prime 2}+P_{5}^{\prime 2}\right]_{[4.5,5.5]}=1.37!!!$

- At the maximum of P_{2} called q_{1}^{2}

$$
P_{4}^{\prime}\left(q_{1}^{2}\right)=\left[\beta P_{5}^{\prime} \sqrt{\frac{1-P_{1}}{1+P_{1}}}\right]_{q_{1}^{2}}
$$

A closer look at the 2 nd bin of $P_{2}=A_{T}^{\mathrm{re}} / 2$

[L.Hofer, JM'15]
This bin is as interesting/important as the anomaly bins of P_{5}^{\prime}. It contains two type of important infos:

- Position of maximum:

$$
q_{1}^{2 L O}=\frac{2 m_{b} M_{B} C_{7}^{\text {eff }}}{C_{10}-\operatorname{Re} C_{9}^{\text {eff }}\left(q_{1}^{2}\right)}
$$

assuming $C_{7}^{\text {eff } \prime}=C_{9}^{\prime}=C_{10}^{\prime}=0$.
It shifts with the zero q_{0}^{2}.

- Value of $P_{2}^{\max }$. Two possibilities:
- SM or NP in $C_{7,9,10} \Rightarrow P_{2}^{\max }=1 / 2$
- RHC NP in $C_{7,9,10}^{\prime} \Rightarrow P_{2}^{\max }<1 / 2$
$1 \mathrm{fb}^{-1}$ data pointed towards shift in q_{1}^{2} and P_{2} in the bin [2,4.3] was $+0.5 \pm 0.07$, little space for RHC. $3 \mathrm{fb}^{-1}$ data too large error in this bin to discern.

Phenomenological implications: S-wave relations

- Two S-wave relations $\Rightarrow A_{S}, A_{S}^{4,5,7,8}, F_{S}$ are NOT independent

$$
\text { Basis: }\left\{\frac{d \Gamma}{d q^{2}}, F_{L}, P_{1}, P_{2}, P_{4}^{\prime}, P_{5}^{\prime}, P_{6}^{\prime}, P_{8}^{\prime}, F_{S}, A_{S}, A_{S}^{4}, A_{S}^{5}\right\}
$$

- The requirement of real solutions when solving 1st S-wave relation for $A_{S}^{4,5}$ \Rightarrow constraints on the allowed ranges of values:

$$
\begin{aligned}
& \left|A_{S}^{4}\right| \leq \frac{1}{2} \sqrt{3 F_{T} F_{S}\left(1-F_{S}\right)\left(1-P_{1}\right)}, \\
& \left|A_{S}^{5}\right| \leq \sqrt{3 F_{T} F_{S}\left(1-F_{S}\right)\left(1+P_{1}\right)}, \\
& \left|A_{S}^{7}\right| \leq \sqrt{3 F_{T} F_{S}\left(1-F_{S}\right)\left(1-P_{1}\right)}, \\
& \left|A_{S}^{8}\right| \leq \frac{1}{2} \sqrt{3 F_{T} F_{S}\left(1-F_{S}\right)\left(1+P_{1}\right)} . \\
& \left|A_{S}\right| \leq 2 \sqrt{3 F_{S}\left(1-F_{S}\right)\left(1-F_{T}\right)}
\end{aligned}
$$

[S. Descotes, T. Hurth, JM, J. Virto'13]
In agreement with previous Cauchy-Schwartz inequalities.

Phenomenological implications: Constraints on A_{S}^{i}

Symmetry relations impose correlations among A_{S}^{i} beyond individual bounds.
Bounds on $A_{S}^{4,5}$ assuming $F_{S} \simeq 6 \%$ in SM

As an illustration:
Assume a measurement of $A_{s}^{5,7,8}$ gives:

$$
A_{S}^{5}=\alpha P_{5}^{\prime}, A_{S}^{7}=-\alpha P_{6}^{\prime} \simeq 0 \text { and } A_{S}^{8}=-\frac{\alpha}{2} P_{8}^{\prime} \simeq 0 \quad\left(\alpha=\sqrt{3 F_{T} F_{S}\left(1-F_{S}\right)}\right)
$$

\Rightarrow symmetry relation fixes completely A_{S}^{4} to be $\frac{\alpha}{2} P_{4}^{\prime}$.
Similarly if we measure $A_{S}^{4,7,8}$ symmetry fixes A_{S}^{5}.

Phenomenological implications: Constraints on A_{S}^{i}

Symmetry relations impose correlations among A_{S}^{i} beyond individual bounds.
Bounds on $A_{S}^{4,5}$ assuming $F_{S} \simeq 6 \%$ in presence of NP $C_{9}^{N P}=-1.5$

As an illustration:
Assume a measurement of $A_{S}^{5,7,8}$ gives:

$$
A_{S}^{5}=\alpha P_{5}^{\prime}, A_{S}^{7}=-\alpha P_{6}^{\prime} \simeq 0 \text { and } A_{S}^{8}=-\frac{\alpha}{2} P_{8}^{\prime} \simeq 0 \quad\left(\alpha=\sqrt{3 F_{T} F_{S}\left(1-F_{S}\right)}\right)
$$

\Rightarrow symmetry relation fixes completely A_{S}^{4} to be $\frac{\alpha}{2} P_{4}^{\prime}$.
Similarly if we measure $A_{S}^{4,7,8}$ symmetry fixes A_{S}^{5}.

Constraints on the $A_{s}^{(i)}$ at maximum and zero of P_{2}

The requirement of real solutions when solving the quadratic S-wave relation at the position q_{1}^{2} of the maximum of P_{2} fixes completely the ratios $\mathrm{r}_{\mathrm{s}}^{4,5}=\mathbf{A}_{\mathrm{s}}^{4} / \mathbf{A}_{\mathrm{s}}^{5}$ and $\mathbf{r}_{\mathrm{s}}^{7,8}=\mathbf{A}_{\mathrm{s}}^{7} / \boldsymbol{A}_{\mathrm{s}}^{8}$ at q_{1}^{2} :

$$
2 \mathbf{A}_{\mathbf{s}}^{4}\left(q_{1}^{2}\right)=\left[\mathbf{A}_{\mathbf{s}}^{5} \sqrt{\frac{1-P_{1}}{1+P_{1}}}\right]_{q_{1}^{2}} \quad \text { and } \quad \mathbf{A}_{\mathbf{s}}^{7}\left(q_{1}^{2}\right)=\left[2 \mathbf{A}_{\mathbf{s}}^{8} \sqrt{\frac{1-P_{1}}{1+P_{1}}}\right]_{q_{1}^{2}} .
$$

Using the symmetry relations at the zero q_{0}^{2} of $P_{2}\left(q_{0}^{2 S M}=4 \mathrm{GeV}^{2}\right)$:

$$
\mathbf{A}_{\mathbf{s}}\left(q_{0}^{2}\right)=\left[\frac{2 \sqrt{F_{L}}\left(2 \mathbf{A}_{\mathbf{S}}^{4}\left(1+P_{1}\right) P_{4}^{\prime}+\mathbf{A}_{\mathbf{S}}^{5}\left(1-P_{1}\right) P_{5}^{\prime}\right.}{\sqrt{F_{T}}\left(1-P_{1}^{2}\right)}\right]_{q_{0}^{2}}
$$

In the absence of RHC ($\left.P_{1} \simeq 0\right)$ the relation simplifies.

Conclusions

- The angular distribution of $B \rightarrow K \pi \ell \ell$ exhibit a set of 4 symmetries common to the P and S -wave sector.
- The symmetries imply 3 non trivial relations among the J_{i} and \tilde{J}_{i}.
- P-wave: Assuming no NP in weak phases we establish a relation between P_{2} and $P_{4,5}^{\prime}, P_{1}$. Also relations at the zero and maximum of P_{2} are found that make explicit the impact of the anomaly of P_{5}^{\prime} in P_{2}.
- S-wave: Only 4 out of the 6 S-wave observables are independent. We establish bounds but also strong correlations among them.
- P_{2} contains not only the information of the zero of $A_{F B}$ but the position and value of its maximum is sensitive to NP.
- NP in SM-like operators shift the position keeping its value to $1 / 2$.
- RHC reduces the peak below $1 / 2$.

Back-up slides

Phenomenological implications(I)

Consistency test on data compare $P_{2}^{\exp }$ with $P_{2}=f\left(P_{1}^{\exp }, P_{4,5}^{\prime \exp }\right)$ (assume: no new weak phases):

$$
P_{2}=\frac{1}{2}\left(P_{4}^{\prime} P_{5}^{\prime}+\frac{1}{\beta} \sqrt{\left(-1+P_{1}+P_{4}^{\prime 2}\right)\left(-1-P_{1}+\beta^{2} P_{5}^{\prime 2}\right)}\right)
$$

- If $P_{2}=-\epsilon$ and $P_{4}^{\prime}=1+\delta\left(P_{1}<-2 \delta\right)$ then $\mathbf{P}_{5}^{\prime} \leq-\mathbf{2} \epsilon /(\mathbf{1}+\delta)$

2013: $\left\langle P_{2}\right\rangle_{[4.3,8.68]} \sim-0.25$ and $\left\langle P_{5}^{\prime}\right\rangle_{[4.3,8.68]} \sim-0.19$ approx. $\epsilon=-0.25,\left\langle P_{5}^{\prime}\right\rangle_{[4.3,8.68]} \leq-0.42$ 2015: $\left\langle P_{2}\right\rangle_{[6,8]} \sim-0.24$ and $\left\langle P_{5}^{\prime}\right\rangle_{[6,8]} \sim-0.5$ approx. $\epsilon=-0.24,\left\langle P_{5}^{\prime}\right\rangle_{[6,8]} \leq-0.4$

$$
\text { Now } P_{2} \text { and } P_{5}^{\prime} \text { bins have the expected order! (in both }[4,6] \text { and }[6,8] \text { bins) }
$$

[Becirevic, Taygudanov'12]

$$
\begin{aligned}
\tilde{J}_{1 a}^{c}=-\tilde{J}_{2 a}^{c} & =\frac{3}{8}\left(\left|A_{0}^{\prime L}\right|^{2}+\left|A_{0}^{\prime R}\right|^{2}\right)\left|B W_{S}\right|^{2} \\
\tilde{J}_{1 b}^{c}=-\tilde{J}_{2 b}^{c} & =\frac{3}{4} \sqrt{3} \operatorname{Re}\left[\left(A_{0}^{\prime L} A_{0}^{L *}+A_{0}^{\prime R} A_{0}^{R *}\right) B W_{S} B W_{P}^{*}\right], \\
\tilde{J}_{4} & =\frac{3}{4} \sqrt{\frac{3}{2}} \operatorname{Re}\left[\left(A_{0}^{\prime L} A_{\|}^{L *}+A_{0}^{\prime R} A_{\|}^{R *}\right) B W_{S} B W_{P}^{*}\right], \\
\tilde{J}_{5} & =\frac{3}{2} \sqrt{\frac{3}{2}} \operatorname{Re}\left[\left(A_{0}^{\prime L} A_{\perp}^{L *}-A_{0}^{\prime R} A_{\perp}^{R *}\right) B W_{S} B W_{P}^{*}\right], \\
\tilde{J}_{7} & =\frac{3}{2} \sqrt{\frac{3}{2}} \operatorname{Im}\left[\left(A_{0}^{\prime L} A_{\|}^{L *}-A_{0}^{\prime R} A_{\|}^{R *}\right) B W_{S} B W_{P}^{*}\right], \\
\tilde{J}_{8} & =\frac{3}{4} \sqrt{\frac{3}{2}} \operatorname{Im}\left[\left(A_{0}^{\prime L} A_{\perp}^{L *}+A_{0}^{\prime R} A_{\perp}^{R *}\right) B W_{S} B W_{P}^{*}\right] .
\end{aligned}
$$

Second S-wave relation parameters

The parameters entering the second S-wave relation are provided here:

$$
\omega=\frac{3}{z_{2}} \quad \rho=-4 \frac{z_{1}}{z_{2}}
$$

where

$$
z_{1}=\sqrt{F_{T} F_{L}}\left(-1+F_{S}\right)
$$

and

$$
z_{2}=\sqrt{F_{T}} \sqrt{\left(1-F_{S}\right)\left(12 A_{S}+16 F_{L}\left(1-F_{S}\right)+27 F_{S}\right)}
$$

