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Outline of the talk

The angular distribution: P+ S wave. S-wave observables.

Symmetries and counting.

Structure of the relations in P and S wave sector.

Phenomenological implications.

Conclusions.
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Angular Distribution

The differential decay rate of B → Kπ`+`− receives contributions from:

P-wave decay B → K ∗(→ Kπ)`+`−

S-wave decay B → K ∗0 (→ Kπ)`+`− with K ∗0 a broad scalar resonance

d5Γ

dq2 dm2
Kπ dcos θK dcos θ` dφ

= WP + WS,

⇒WP contains the pure P-wave contribution.

⇒WS contains the pure S-wave exchange and S-P interference.
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Angular Distribution (2)

Structure:

B → K ∗`+`− described by 6 complex amplitudes AL,R
‖,⊥,0 (m` = 0, AS = 0)

B → K ∗0 `
+`− described by 2 complex amplitudes A′L,R0

These amplitudes are multiplied by a BWi (m2
Kπ) with i = K ∗,K ∗0 describing the

propagation of the K ∗ and K ∗0 meson.

A bit more on the structure. WP is well known and contains Ji (q2,mKπ) while

WS =
1

4π

[
J̃c

1a + J̃c
1b cos θK + (J̃c

2a + J̃c
2b cos θK ) cos 2θ` + J̃4 sin θK sin 2θ` cosφ

+J̃5 sin θK sin θ` cosφ+ J̃7 sin θK sin θ` sinφ+ J̃8 sin θK sin 2θ` sinφ
]
.

we assume lepton masses to zero (for simplicity).
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S-wave observables

The S-wave observables are defined as

AS =
8
3

J̃c
1b +

¯̃Jc
1b

Γ′full + Γ
′
full

, ACP
S =

8
3

J̃c
1b −

¯̃Jc
1b

Γ′full + Γ
′
full

,

Ai
S =

4
3

J̃i +
¯̃Ji

Γ′full + Γ
′
full

, Ai CP
S =

4
3

J̃i − ¯̃Ji

Γ′full + Γ
′
full

,

i = 4,5,7,8. The total differential decay width Γ′full and FS are

Γ′full = Γ′K∗ + Γ′K∗
0
, FS =

Γ′K∗
0

+ Γ̄′K∗
0

Γ′full + Γ̄′full

One can reexpress WS in terms of this set of observables.

In the following and for simplicity neglect CPV contributions (bar observables)
exact expressions can be found in [L. Hofer, J.M’15].
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Symmetries of the angular distribution:
The angular distribution of B → K ∗(→ Kπ)µ+µ− exhibit symmetries:

⇒ Transformation of its amplitudes AL,R
⊥,‖,0 leaving invariant the distribution.

Number of independent observables given a set of amplitudes and
generators of symmetry.

Minimal number of observables→ a complete basis.
Provide consistency relations among observables.

Not any combination of transversity amplitudes AL,R
⊥,‖,0 defines an

observable. For instance,

A1
T = −2

Re(A‖A∗⊥)

|A⊥|2 + |A‖|2

is ”gauge dependent” and cannot be extracted from the distribution.

“Amplitude analysis approach” uses/has all symmetries embedded.
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Counting

The counting of degrees of freedom for the P-wave sector ALONE shows:

nP−wave
Observables = nJ − nrelations = 2nA − nP

symmetries

Case Coeff. Ji Amplitudes Rel. Symmetries Observables
m` = 0, AS = 0 11 6 3 4 8

m` = 0 11 7 2 5 9
m` > 0, AS = 0 11 7 1 4 10

m` > 0 12 8 0 4 12

All symmetries (massive and scalars) were found explicitly later on.
[JM, Mescia, Ramon, Virto’12]

ADDING the S-wave sector:

nS−wave
Observables = 2nA − nP+S

symmetries − nP
Observables = 4

Case Coeff. Ji , J̃i Amplitudes Rel. Symmetries Observables
m` = 0, AS = 0 11+8 6+2 3+4 4 8+4
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Natural language to make explicit all those symmetries is to introduce:

n‖ =

( AL
‖BWP

AR∗
‖ BW ∗

P

)
, n⊥ =

(
AL
⊥BWP

−AR∗
⊥ BW ∗

P

)
, n0 =

(
AL

0BWP

AR∗
0 BW ∗

P

)
, nS =

(
A′L0 BWS

A′R∗0 BW ∗
S

)
.

All P-wave coefficients can be expressed in terms of them:

J1s = 3J2s =
3
4
(
|n⊥|2 + |n‖|2

)
, J1c = −J2c = |n0|2 J3 =

1
2
(
|n⊥|2 − |n‖|2

)
,

J4 =
1√
2

Re(n†0 n‖) , J5 =
√

2 Re(n†0 n⊥) , J6s = 2 Re(n†⊥ n‖) ,

J7 = −
√

2 Im(n†0 n‖), J8 = − 1√
2

Im(n†0 n⊥) J9 = −Im(n†⊥ n‖)

Modulus and Real and Imaginary bilinear scalar products of ni
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Also S-wave can also be expressed:

J̃c
1a = −J̃c

2a =
3
8
|nS|2, J̃c

1b = −J̃c
2b =

3
4

√
3Re(n†S n0),

J̃4 =
3
4

√
3
2

Re(n†S n‖), J̃5 =
3
2

√
3
2

Re(n†S n⊥),

J̃7 =
3
2

√
3
2

Im(n†‖ nS), J̃8 =
3
4

√
3
2

Im(n†⊥nS).

• Exactly same symmetries for P and S wave sector.

• Only 4 out of these 8 J̃i are independent.

•We have found 2 (P-wave) + 2 (S-wave) relations out of 7.

⇒ Three relations lacking!
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Symmetries

A symmetry of the angular distribution will be a unitary transformation

n
′

i = Uni =

[
eiφL 0
0 e−iφR

] [
cos θ − sin θ
sin θ cos θ

] [
cosh i θ̃ − sinh i θ̃
− sinh i θ̃ cosh i θ̃

]
ni .

U defines the four symmetries of the massless angular distribution:

two global phase transformations (φL and φR),
a rotation θ among the real and imaginary components of the
amplitudes independently.
another rotation θ̃ that mixes real and imaginary components
of the transversity amplitudes.
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How to obtain the lacking 3 relations?

There are basically two possible procedures:

I) Since n‖ and n⊥ span the space of complex 2-component vectors:

ni = ain‖ + bin⊥, i = 0,S.

Contracting with n‖ and n⊥ we get a system of linear equations→ ai ,bi .

Using n0,nS in terms of n‖,n⊥ to calculate |n0|2, |nS|2,n†0nS, one finds

|n0|2 = a0(n†0n‖) + b0(n†0n⊥), (1st relation : P−wave)

|nS|2 = aS(n†Sn‖) + bS(n†Sn⊥), (1st relation : S−wave)

n†0nS = aS(n†0n‖) + bS(n†0n⊥) (2nd relation : S−wave)

These are the 3 extra relations to be expressed in terms of Ji , J̃i .

2) Solve the system of Ai in terms of Ji , J̃i and these three same equations
appear.
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Structure of the relations
The three relations has a interestingly similar structure:

• P-wave in a compact form (not including CPV observables for simplicity)

P2 = +
1
2

[
(P′4P′5 + δ1) +

1
β

√
(−1 + P1 + P′24 )(−1− P1 + β2P′25 ) + δ2 + δ3P1 + δ4P1

2
]

where δ1,2,3 = f (P′4,5,P3,P′6,8) and δ4 = 0 (if no CPV)

• First S-wave (quadratic and same structure) is identical to the P-wave relation with replacements:

P′4 →
2
α

A4
S , P′5 →

1
α

A5
S , P′6 → −

1
α

A7
S , P′8 → −

2
α

A8
S α =

√
3FT FS(1− FS)

where all ratios are ≤
√

2.

• Second S-wave is linear, but combined with the previous ones can be written as the P-wave
relation with the replacements:

P′4 → P
′
4 = 2ωA4

S + ρP′4 P′5 → P
′
5 = ωA5

S + ρP′5
P′6 → P

′
6 = −ωA7

S + ρP′6 P′8 → P
′
8 = −2ωA8

S + ρP′8

where ω, ρ are functions of FL,FS ,AS .

P′i → P
′
i = ωi Ai

S + ρi P′i i = 4, 5, 8 P′6 → P
′
6 = ω7A7

S + ρ6P′6

P′4 → P
′
4 = a1A4

S + b, P′5 → P
′
5, P′6 → P

′
6, P′8 → P

′
8

P2 =
1

2ω1

[
(A4

SA5
S + δ1S) +

1
β

√
(−1 + P1 + (A4

S)2)(−1− P1 + β2(A5
S)2) + δ2S + δ3SP1 + δ4SP1

2
]

where δ1S,2S,3S = f (A4,5
S ,P3,A

7,8
S ) and δ4 = 0 (if no CPV)

• Second S-wave is linear, but once combined with the previous ones becomes:

P2 = +
1

2ω2

[
(P ′4P

′
5 + δ1C) +

1
β

√
(−1 + P1 + P ′24 )(−1− P1 + β2P ′25 ) + δ2C + δ3CP1 + δ4CP1

2
]

where δ1C,2C,3C = f (P ′4,5,P3,P ′6,8) and Pi = Pi/ωi − Ai
S/ρi .
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Phenomenological implications: P-wave relation
⇒ The first exact relation (no scalars) establishes a consistency relation
between the 6 independent Pi + a seventh redundant P3 (including the PCP

i ).

Under the hypothesis: No New Physics in weak phases of Wilson coefficients. Then
[N. Serra, J.M.’14]

Pderived
2 =

1
2

[
P′4P′5 +

1
β

√
(−1 + P1 + P′24 )(−1− P1 + β2P′25 )

]
In 3fb−1 slight shift up of P2
and down of P′5 as required.

2013 data: 2015 data:

2 3 4 5 6 7 8 9
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0.5

q2HGeV2L

P
2

SMKMPW Hno ccL

0 5 10 15 20
-1.0

-0.5

0.0

0.5

1.0

q2HGeV2L

P
2

SMKMPW Hno ccL

P2
derived

0 5 10 15 20
-1.0

-0.5

0.0

0.5

1.0

q2HGeV2L

P
2

1 fb−1 data: Difference of 2σ on third
bin between Pmeasured

2 and Pderived
2

3 fb−1 data move to increase agreement to 1.3σ [4,6]
and 1.1σ [6,8] between Pmeasured

2 and Pderived
2
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Symmetries and P-wave
Relation between P ′4,5 at q2

0 and at q2
1 of P2

P2
P4

'
- ΒP5

'

q1
2

q0
2

P4
' 2

+ Β
2P5

' 2
-1

SM

1 2 3 4 5 6

-1.0

-0.5

0.0

0.5

1.0

q2

P2
P4

'
- ΒP5

'

q1
2 q0

2

P4
' 2

+ Β
2P5

' 2
-1

C9
NP

=-1.5

1 2 3 4 5 6

-1.0

-0.5

0.0

0.5

1.0

q2

At the zero of P2 called q2
0

P ′24 (q2
0) + β2P ′25 (q2

0) = 1 + η(q2
0)

where η(q2
0)→ 0 if P1 → 0 (NO RHC)

Example: q2SM
0 ' 4 GeV2. In the SM I would get in a

1 GeV2 bin around the zero:〈
P′4
〉

[3.5,4.5]
= 0.714,

〈
P′5
〉

[3.5,4.5]
= −0.674

⇒ [P′24 + P′25 ][3.5,4.5] = 0.96

If you miss the right position of the zero you get:
[P′24 + P′25 ][2.5,3.5] = 0.37 and
[P′24 + P′25 ][4.5,5.5] = 1.37!!!

At the maximum of P2 called q2
1

P′4(q2
1) =

[
βP′5

√
1− P1

1 + P1

]
q2

1
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A closer look at the 2nd bin of P2 = Are
T /2

[L.Hofer, JM’15]

C9
NP

=-1.5SM

RHC

1 2 3 4 5 6
0.0

0.1

0.2

0.3

0.4

0.5

q2

P
2

Pexp
2 [2,4.3]

= 0.5± 0.07

PSM∗∗
2 [2,4.3] = 0.24+0.11

−0.14

PCNP
9 =−1.5

2 [2,4.3]
= 0.43

** KMPW in BZ: 0.16± 0.12.

This bin is as interesting/important as the anomaly
bins of P ′5. It contains two type of important infos:

Position of maximum:

q2LO
1 =

2mbMBCeff
7

C10 − ReCeff
9 (q2

1)

assuming Ceff ′
7 = C′9 = C′10 = 0.

It shifts with the zero q2
0 .

Value of Pmax
2 . Two possibilities:

SM or NP in C7,9,10 ⇒ Pmax
2 = 1/2

RHC NP in C′7,9,10 ⇒ Pmax
2 < 1/2

1 fb−1 data pointed towards shift in q2
1 and P2

in the bin [2,4.3] was +0.5± 0.07, little space
for RHC. 3 fb−1 data too large error in this bin
to discern.

We have established a new link between:

Maximum of P2 and presence of RH
currents:

Pmax
2 = 1/2⇒ NO RH currents

Intuitively,
At the maximum of P2 ⇒ |n⊥| ' |n‖| ⇒ P1 ' 0
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Phenomenological implications: S-wave relations

• Two S-wave relations⇒ AS, A4,5,7,8
S , FS are NOT independent

Basis:
{

dΓ
dq2 ,FL,P1,P2,P ′4,P

′
5,P

′
6,P

′
8,FS,AS,A4

S,A
5
S

}
• The requirement of real solutions when solving 1st S-wave relation for A4,5

S
⇒ constraints on the allowed ranges of values:

|A4
S | ≤

1
2

√
3FT FS(1− FS)(1− P1),

|A5
S | ≤

√
3FT FS(1− FS)(1 + P1),

|A7
S | ≤

√
3FT FS(1− FS)(1− P1),

|A8
S | ≤

1
2

√
3FT FS(1− FS)(1 + P1).

|AS | ≤ 2
√

3FS(1− FS)(1− FT )

[S. Descotes, T. Hurth, JM, J. Virto’13]
In agreement with previous Cauchy-Schwartz inequalities.
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Phenomenological implications: Constraints onAi
S

Symmetry relations impose correlations among Ai
S beyond individual bounds.

Bounds on A4,5
S assuming FS ' 6% in SM

0 2 4 6 8
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

q2HGeV2L

A S4

0 2 4 6 8

-0.4

-0.2

0.0

0.2

0.4

q2HGeV2L

A S5
As an illustration:

Assume a measurement of A5,7,8
S gives:

A5
S = αP ′5, A7

S = −αP ′6 ' 0 and A8
S = −α2 P ′8 ' 0 (α =

√
3FT FS(1− FS))

⇒ symmetry relation fixes completely A4
S to be α

2 P ′4.

Similarly if we measure A4,7,8
S symmetry fixes A5

S.
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Phenomenological implications: Constraints onAi
S

Symmetry relations impose correlations among Ai
S beyond individual bounds.

Bounds on A4,5
S assuming FS ' 6% in presence of NP CNP

9 = −1.5

0 2 4 6 8
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

q2HGeV2L

A S4
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-0.4

-0.2

0.0

0.2

0.4

q2HGeV2L

A S5
As an illustration:

Assume a measurement of A5,7,8
S gives:

A5
S = αP ′5, A7

S = −αP ′6 ' 0 and A8
S = −α2 P ′8 ' 0 (α =

√
3FT FS(1− FS))

⇒ symmetry relation fixes completely A4
S to be α

2 P ′4.

Similarly if we measure A4,7,8
S symmetry fixes A5

S.
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Constraints on the A(i)
S at maximum and zero of P2

The requirement of real solutions when solving the quadratic S-wave
relation at the position q2

1 of the maximum of P2 fixes completely the
ratios r4,5

S = A4
S/A

5
S and r7,8

S = A7
S/A

8
S at q2

1 :

2A4
S(q2

1) =

[
A5

S

√
1− P1

1 + P1

]
q2

1

and A7
S(q2

1) =

[
2A8

S

√
1− P1

1 + P1

]
q2

1

.

Using the symmetry relations at the zero q2
0 of P2 (q2SM

0 = 4 GeV2):

AS(q2
0) =

[
2
√

FL(2A4
S(1 + P1)P ′4 + A5

S(1− P1)P ′5√
FT (1− P2

1 )

]
q2

0

In the absence of RHC (P1 ' 0) the relation simplifies.
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Conclusions

The angular distribution of B → Kπ`` exhibit a set of 4 symmetries
common to the P and S-wave sector.

The symmetries imply 3 non trivial relations among the Ji and J̃i .

P-wave: Assuming no NP in weak phases we establish a relation
between P2 and P ′4,5, P1. Also relations at the zero and maximum of
P2 are found that make explicit the impact of the anomaly of P ′5 in P2.

S-wave: Only 4 out of the 6 S-wave observables are independent.
We establish bounds but also strong correlations among them.

P2 contains not only the information of the zero of AFB but the
position and value of its maximum is sensitive to NP.

- NP in SM-like operators shift the position keeping its value to 1/2.
- RHC reduces the peak below 1/2.
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Back-up slides
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Phenomenological implications(I)

4 5 6 7 8

-1.0
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P 5
'

Consistency test on data compare Pexp
2 with P2 = f(Pexp

1 ,P′exp
4,5 ) (assume: no new weak phases):

P2 =
1
2

(
P′4P′5 +

1
β

√
(−1 + P1 + P′24 )(−1− P1 + β2P′25 )

)
• If P2 = −ε and P′4 = 1 + δ (P1 < −2δ) then P′5 ≤ −2ε/(1 + δ)

2013: 〈P2〉[4.3,8.68] ∼ −0.25 and
〈
P′5
〉

[4.3,8.68]
∼ −0.19 approx. ε = −0.25,

〈
P′5
〉

[4.3,8.68]
≤ −0.42

2015: 〈P2〉[6,8] ∼ −0.24 and
〈
P′5
〉

[6,8]
∼ −0.5 approx. ε = −0.24,

〈
P′5
〉

[6,8]
≤ −0.4

Now P2 and P′5 bins have the expected order! (in both [4,6] and [6,8] bins)
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[Becirevic, Taygudanov’12]

J̃c
1a = −J̃c

2a =
3
8

(|A′L0 |2 + |A′R0 |2)|BWS|2

J̃c
1b = −J̃c

2b =
3
4

√
3Re

[
(A′L0 AL∗

0 + A′R0 AR∗
0 )BWSBW ∗

P

]
,

J̃4 =
3
4

√
3
2

Re
[
(A′L0 AL∗

‖ + A′R0 AR∗
‖ )BWSBW ∗

P

]
,

J̃5 =
3
2

√
3
2

Re
[
(A′L0 AL∗

⊥ − A′R0 AR∗
⊥ )BWSBW ∗

P

]
,

J̃7 =
3
2

√
3
2

Im
[
(A′L0 AL∗

‖ − A′R0 AR∗
‖ )BWSBW ∗

P

]
,

J̃8 =
3
4

√
3
2

Im
[
(A′L0 AL∗

⊥ + A′R0 AR∗
⊥ )BWSBW ∗

P

]
.
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Second S-wave relation parameters

The parameters entering the second S-wave relation are provided here:

ω =
3
z2

ρ = −4
z1

z2

where

z1 =
√

FT FL(−1 + FS)

and

z2 =
√

FT
√

(1− FS)(12AS + 16FL(1− FS) + 27FS)
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