Symmetries in P and S wave for $B o K^* \mu \mu$

Joaquim Matias

Universitat Autonoma de Barcelona

LHCb workshop Edinburgh - May 2015

Outline of the talk

- The angular distribution: P+ S wave. S-wave observables.
- Symmetries and counting.
- Structure of the relations in P and S wave sector.
- Phenomenological implications.
- Conclusions.

Angular Distribution

The differential decay rate of $B \to K\pi \ell^+ \ell^-$ receives contributions from:

- P-wave decay $B \to K^*(\to K\pi)\ell^+\ell^-$
- S-wave decay $B \to K_0^* (\to K\pi) \ell^+ \ell^-$ with K_0^* a broad scalar resonance

$$\frac{\mathit{d}^{5}\Gamma}{\mathit{d}\mathit{q}^{2}\,\mathit{d}\mathit{m}_{K\pi}^{2}\,\mathit{d}\!\cos\theta_{\mathit{K}}\,\mathit{d}\!\cos\theta_{\mathit{\ell}}\,\mathit{d}\phi}\,=\,\mathit{W}_{\mathit{P}}\,+\,\mathit{W}_{\mathit{S}},$$

- \Rightarrow W_P contains the pure P-wave contribution.
- \Rightarrow W_S contains the pure S-wave exchange and S-P interference.

Angular Distribution (2)

Structure:

- $B o K^* \ell^+ \ell^-$ described by 6 complex amplitudes $A^{L,R}_{\parallel,\perp,0}$ $(m_\ell=0,\,A_S=0)$
- $B o K_0^* \ell^+ \ell^-$ described by 2 complex amplitudes $A_0'^{L,R}$

These amplitudes are multiplied by a $BW_i(m_{K\pi}^2)$ with $i=K^*, K_0^*$ describing the propagation of the K^* and K_0^* meson.

A bit more on the structure. W_P is well known and contains $J_i(q^2, m_{K\pi})$ while

$$\begin{split} W_{S} = \frac{1}{4\pi} \left[\tilde{J}^{c}_{1a} + \tilde{J}^{c}_{1b} \cos \theta_{K} + (\tilde{J}^{c}_{2a} + \tilde{J}^{c}_{2b} \cos \theta_{K}) \cos 2\theta_{\ell} + \tilde{J}_{4} \sin \theta_{K} \sin 2\theta_{\ell} \cos \phi \right. \\ \left. + \tilde{J}_{5} \sin \theta_{K} \sin \theta_{\ell} \cos \phi + \tilde{J}_{7} \sin \theta_{K} \sin \theta_{\ell} \sin \phi + \tilde{J}_{8} \sin \theta_{K} \sin 2\theta_{\ell} \sin \phi \right]. \end{split}$$

we assume lepton masses to zero (for simplicity).

S-wave observables

The S-wave observables are defined as

$$\begin{split} A_{S} &= \frac{8}{3} \frac{\tilde{J}_{1b}^{c} + \bar{\tilde{J}}_{1b}^{c}}{\Gamma_{\text{full}}^{\prime} + \bar{\Gamma}_{\text{full}}^{\prime}}, \\ A_{S}^{\text{CP}} &= \frac{8}{3} \frac{\tilde{J}_{1b}^{c} - \bar{\tilde{J}}_{1b}^{c}}{\Gamma_{\text{full}}^{\prime} + \bar{\Gamma}_{\text{full}}^{\prime}}, \\ A_{S}^{i} &= \frac{4}{3} \frac{\tilde{J}_{i} + \bar{\tilde{J}}_{i}}{\Gamma_{\text{full}}^{\prime} + \bar{\Gamma}_{\text{full}}^{\prime}}, \\ A_{S}^{i\text{CP}} &= \frac{4}{3} \frac{\tilde{J}_{i} - \bar{\tilde{J}}_{i}}{\Gamma_{\text{full}}^{\prime} + \bar{\Gamma}_{\text{full}}^{\prime}}, \end{split}$$

i = 4, 5, 7, 8. The total differential decay width Γ'_{full} and F_{S} are

$$\Gamma'_{\mathrm{full}} = \Gamma'_{K^*} + \Gamma'_{K_0^*}, \qquad \qquad F_{\mathcal{S}} = \frac{\Gamma'_{K_0^*} + \Gamma'_{K_0^*}}{\Gamma'_{\mathrm{full}} + \overline{\Gamma}'_{\mathrm{full}}}$$

One can reexpress W_S in terms of this set of observables.

In the following and for simplicity neglect CPV contributions (bar observables) exact expressions can be found in [L. Hofer, J.M'15].

Symmetries of the angular distribution:

The angular distribution of $B \to K^*(\to K\pi)\mu^+\mu^-$ exhibit symmetries:

- \Rightarrow Transformation of its amplitudes $A_{\perp,\parallel,0}^{L,R}$ leaving invariant the distribution.
- Number of independent observables given a set of amplitudes and generators of symmetry.
 - Minimal number of observables → a complete basis.
 - Provide consistency relations among observables.
- Not any combination of transversity amplitudes $A_{\perp,\parallel,0}^{L,R}$ defines an observable. For instance,

$$A_T^1 = -2 rac{\text{Re}(A_{\parallel} A_{\perp}^*)}{|A_{\perp}|^2 + |A_{\parallel}|^2}$$

is "gauge dependent" and cannot be extracted from the distribution.

• "Amplitude analysis approach" uses/has all symmetries embedded.

Counting

The **counting of degrees of freedom** for the P-wave sector ALONE shows:

$$n_{Observables}^{P-wave} = n_J - n_{relations} = 2n_A - n_{symmetries}^P$$

Case	Coeff. J_i	Amplitudes	Rel.	Symmetries	Observables
$m_{\ell}=0, A_{\mathcal{S}}=0$	11	6	3	4	8
$m_\ell=0$	11	7	2	5	9
$m_{\ell} > 0, A_{S} = 0$	11	7	1	4	10
$m_\ell > 0$	12	8	0	4	12

All symmetries (massive and scalars) were found explicitly later on.

[JM, Mescia, Ramon, Virto'12]

ADDING the S-wave sector:

$$n_{Observables}^{S-wave} = 2n_A - n_{symmetries}^{P+S} - n_{Observables}^{P} = 4$$

Case	Coeff. J_i , \tilde{J}_i	Amplitudes	Rel.	Symmetries	Observables
$m_{\ell} = 0, A_{S} = 0$	11+8	6+2	3+4	4	8+4

Natural language to make explicit all those symmetries is to introduce:

$$n_{\parallel} = \begin{pmatrix} A_{\parallel}^{L}BW_{P} \\ A_{\parallel}^{R*}BW_{P}^{*} \end{pmatrix}, \ n_{\perp} = \begin{pmatrix} A_{\perp}^{L}BW_{P} \\ -A_{\perp}^{R*}BW_{P}^{*} \end{pmatrix}, \ n_{0} = \begin{pmatrix} A_{0}^{L}BW_{P} \\ A_{0}^{R*}BW_{P}^{*} \end{pmatrix}, \ n_{S} = \begin{pmatrix} A_{0}^{\prime L}BW_{S} \\ A_{0}^{\prime R*}BW_{S}^{*} \end{pmatrix}.$$

All P-wave coefficients can be expressed in terms of them:

$$\begin{split} \textbf{J}_{1\text{s}} &= \textbf{3} \textbf{J}_{2\text{s}} \; = \; \frac{3}{4} \left(|n_\perp|^2 + |n_\parallel|^2 \right), \quad \textbf{J}_{1\text{c}} = -\textbf{J}_{2\text{c}} = |n_0|^2 \quad J_3 = \frac{1}{2} \left(|n_\perp|^2 - |n_\parallel|^2 \right), \\ J_4 &= \; \frac{1}{\sqrt{2}} \text{Re}(n_0^\dagger \, n_\parallel), \qquad J_5 = \sqrt{2} \, \text{Re}(n_0^\dagger \, n_\perp), \quad J_{6s} = 2 \, \text{Re}(n_\perp^\dagger \, n_\parallel), \\ J_7 &= \; -\sqrt{2} \, \text{Im}(n_0^\dagger \, n_\parallel), \qquad J_8 = -\frac{1}{\sqrt{2}} \text{Im}(n_0^\dagger \, n_\perp) \quad J_9 = -\text{Im}(n_\perp^\dagger \, n_\parallel) \end{split}$$

Modulus and Real and Imaginary bilinear scalar products of n_i

Also S-wave can also be expressed:

$$\begin{split} \tilde{\mathbf{J}}_{1a}^{c} &= -\tilde{\mathbf{J}}_{2a}^{c} = \frac{3}{8} |n_{S}|^{2}, \quad \tilde{\mathbf{J}}_{1b}^{c} = -\tilde{\mathbf{J}}_{2b}^{c} = \frac{3}{4} \sqrt{3} \mathrm{Re}(n_{S}^{\dagger} \, n_{0}), \\ \tilde{\mathbf{J}}_{4} &= \frac{3}{4} \sqrt{\frac{3}{2}} \mathrm{Re}(n_{S}^{\dagger} \, n_{\parallel}), \quad \tilde{\mathbf{J}}_{5} = \frac{3}{2} \sqrt{\frac{3}{2}} \mathrm{Re}(n_{S}^{\dagger} \, n_{\perp}), \\ \tilde{\mathbf{J}}_{7} &= \frac{3}{2} \sqrt{\frac{3}{2}} \mathrm{Im}(n_{\parallel}^{\dagger} \, n_{S}), \quad \tilde{\mathbf{J}}_{8} = \frac{3}{4} \sqrt{\frac{3}{2}} \mathrm{Im}(n_{\perp}^{\dagger} \, n_{S}). \end{split}$$

- Exactly same symmetries for P and S wave sector.
- Only 4 out of these 8 \tilde{J}_i are independent.
- We have found 2 (P-wave) + 2 (S-wave) relations out of 7.

⇒ Three relations lacking!

Symmetries

A **symmetry** of the angular distribution will be a unitary transformation

$$n_i^{'} = \textit{U} n_i = \left[\begin{array}{cc} e^{i\phi_L} & 0 \\ 0 & e^{-i\phi_R} \end{array} \right] \left[\begin{array}{cc} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array} \right] \left[\begin{array}{cc} \cosh i\tilde{\theta} & -\sinh i\tilde{\theta} \\ -\sinh i\tilde{\theta} & \cosh i\tilde{\theta} \end{array} \right] n_i \, .$$

U defines the **four symmetries** of the massless angular distribution:

- two global phase transformations (ϕ_L and ϕ_R),
- a rotation θ among the real and imaginary components of the amplitudes independently.
- \bullet another rotation $\tilde{\theta}$ that mixes real and imaginary components of the transversity amplitudes.

How to obtain the lacking 3 relations?

There are basically two possible procedures:

I) Since n_{\parallel} and n_{\perp} span the space of complex 2-component vectors:

$$n_i = a_i n_{\parallel} + b_i n_{\perp}, \quad i = 0, S.$$

Contracting with n_{\parallel} and n_{\perp} we get a system of linear equations $\rightarrow a_i, b_i$.

Using n_0, n_S in terms of n_{\parallel}, n_{\perp} to calculate $|n_0|^2, |n_S|^2, n_0^{\dagger} n_S$, one finds

$$|n_0|^2 = a_0(n_0^{\dagger}n_{\parallel}) + b_0(n_0^{\dagger}n_{\perp}), \quad (1st \, relation : P - wave)$$
 $|n_S|^2 = a_S(n_S^{\dagger}n_{\parallel}) + b_S(n_S^{\dagger}n_{\perp}), \quad (1st \, relation : S - wave)$
 $n_0^{\dagger}n_S = a_S(n_0^{\dagger}n_{\parallel}) + b_S(n_0^{\dagger}n_{\perp}) \quad (2nd \, relation : S - wave)$

These are the 3 extra relations to be expressed in terms of J_i , \tilde{J}_i .

2) Solve the system of A_i in terms of J_i , \tilde{J}_i and these three same equations appear.

Structure of the relations

The three relations has a interestingly similar structure:

• P-wave in a compact form (not including CPV observables for simplicity)

$$P_2 = +\frac{1}{2} \left[(P_4' P_5' + \delta_1) + \frac{1}{\beta} \sqrt{(-1 + P_1 + P_4'^2)(-1 - P_1 + \beta^2 P_5'^2) + \delta_2 + \delta_3 P_1 + \delta_4 P_1^2} \right]$$

where $\delta_{1,2,3} = f(P'_{4,5}, P_3, P'_{6,8})$ and $\delta_4 = 0$ (if no CPV)

• First S-wave (quadratic and same structure) is identical to the P-wave relation with replacements:

$$P_4' \rightarrow \frac{2}{\alpha} A_S^4, \quad P_5' \rightarrow \frac{1}{\alpha} A_S^5, \quad P_6' \rightarrow -\frac{1}{\alpha} A_S^7, \quad P_8' \rightarrow -\frac{2}{\alpha} A_S^8 \qquad \alpha = \sqrt{3F_T F_S (1-F_S)}$$

where all ratios are $\leq \sqrt{2}$.

 Second S-wave is linear, but combined with the previous ones can be written as the P-wave relation with the replacements:

$$\begin{split} P_4' \rightarrow \mathcal{P}_4' &= 2\omega A_S^4 + \rho P_4' \quad P_5' \rightarrow \mathcal{P}_5' = \omega A_S^5 + \rho P_5' \\ P_6' \rightarrow \mathcal{P}_6' &= -\omega A_S^7 + \rho P_6' \quad P_8' \rightarrow \mathcal{P}_8' = -2\omega A_S^8 + \rho P_8' \end{split}$$

where ω , ρ are functions of F_L , F_S , A_S .

Phenomenological implications: P-wave relation

 \Rightarrow The first **exact** relation (no scalars) establishes a consistency relation between the 6 independent P_i + a seventh redundant P_3 (including the P_i^{CP}).

Under the hypothesis: No New Physics in weak phases of Wilson coefficients. Then

$$P_2^{\text{derived}} = \frac{1}{2} \left[P_4' P_5' + \frac{1}{\beta} \sqrt{(-1 + P_1 + P_4'^2)(-1 - P_1 + \beta^2 P_5'^2)} \right]$$

[N. Serra, J.M.'14] In 3fb⁻¹ slight shift up of P_2 and down of P_5' as required.

1 fb⁻¹ data: Difference of 2σ on third bin between $P_2^{measured}$ and $P_2^{derived}$

3 fb⁻¹ data move to increase agreement to 1.3 σ [4,6] and 1.1 σ [6,8] between $P_2^{measured}$ and $P_2^{derived}$

Symmetries and P-wave

Relation between $P'_{4,5}$ at q_0^2 and at q_1^2 of P_2

• At the zero of P_2 called q_0^2

$$P_4^{\prime 2}(q_0^2) + \beta^2 P_5^{\prime 2}(q_0^2) = 1 + \eta(q_0^2)$$

where $\eta(q_0^2) \rightarrow 0$ if $P_1 \rightarrow 0$ (NO RHC)

Example: $q_0^{2SM} \simeq 4 \text{ GeV}^2$. In the SM I would get in a 1 GeV² bin around the zero:

$$\langle P_4' \rangle_{[3.5,4.5]} = 0.714, \langle P_5' \rangle_{[3.5,4.5]} = -0.674$$

$$\Rightarrow [P_4'^2 + P_5'^2]_{[3.5,4.5]} = 0.96$$

If you miss the right position of the zero you get: $[P_4'^2+P_5'^2]_{[2.5,3.5]}=0.37 \text{ and } \\ [P_4'^2+P_5'^2]_{[4.5,5.5]}=1.37!!!$

• At the maximum of P_2 called q_1^2

$$P_4'(q_1^2) = \left[\beta P_5' \sqrt{\frac{1 - P_1}{1 + P_1}}\right]_{q_1^2}$$

A closer look at the 2nd bin of $P_2 = A_T^{\text{re}}/2$

[L.Hofer, JM'15]

** KMPW in BZ: 0.16 ± 0.12 .

This bin is as interesting/important as the anomaly bins of P'_5 . It contains two type of important infos:

Position of maximum:

$$q_1^{2LO} = rac{2m_b M_B C_9^{eff}}{C_{10} - ext{Re} C_9^{eff}(q_1^2)}$$

assuming $C_7^{\text{eff}\prime}=C_9^\prime=C_{10}^\prime=0.$ It shifts with the zero q_0^2 .

- Value of P_2^{max} . Two possibilities:
 - SM or NP in $C_{7,9,10} \Rightarrow P_2^{max} = 1/2$
 - RHC NP in $C'_{7,9,10} \Rightarrow P_2^{max} < 1/2$

1 fb⁻¹ data pointed towards shift in q_1^2 and P_2 in the bin [2,4.3] was $+0.5 \pm 0.07$, little space for RHC. 3 fb⁻¹ data too large error in this bin to discern.

Phenomenological implications: S-wave relations

• Two S-wave relations $\Rightarrow A_S, A_S^{4,5,7,8}, F_S$ are **NOT independent**

Basis:
$$\left\{ \frac{d\Gamma}{dq^2}, F_L, P_1, P_2, P_4', P_5', P_6', P_8', F_S, A_S, A_S^4, A_S^5 \right\}$$

• The requirement of real solutions when solving 1st S-wave relation for $A_S^{4,5}$ \Rightarrow constraints on the allowed ranges of values:

$$\begin{split} |A_S^4| &\leq \frac{1}{2} \sqrt{3F_T F_S (1 - F_S) (1 - P_1)}, \\ |A_S^5| &\leq \sqrt{3F_T F_S (1 - F_S) (1 + P_1)}, \\ |A_S^7| &\leq \sqrt{3F_T F_S (1 - F_S) (1 - P_1)}, \\ |A_S^8| &\leq \frac{1}{2} \sqrt{3F_T F_S (1 - F_S) (1 + P_1)}. \\ |A_S| &\leq 2 \sqrt{3F_S (1 - F_S) (1 - F_T)} \end{split}$$

[S. Descotes, T. Hurth, JM, J. Virto'13]

In agreement with previous Cauchy-Schwartz inequalities.

Phenomenological implications: Constraints on $A_{\mathcal{S}}^i$

Symmetry relations impose correlations among A_S^i beyond individual bounds.

As an illustration:

Assume a measurement of $A_S^{5,7,8}$ gives:

$$A_S^5 = \alpha P_5', A_S^7 = -\alpha P_6' \simeq 0 \text{ and } A_S^8 = -\frac{\alpha}{2} P_8' \simeq 0 \quad (\alpha = \sqrt{3F_T F_S(1 - F_S)})$$

 \Rightarrow **symmetry relation** fixes completely A_S^4 to be $\frac{\alpha}{2} P_4'$.

Similarly if we measure $A_S^{4,7,8}$ symmetry fixes A_S^5 .

Phenomenological implications: Constraints on $A_{\mathcal{S}}^i$

Symmetry relations impose correlations among A_{S}^{i} beyond individual bounds.

As an illustration:

Assume a measurement of $A_S^{5,7,8}$ gives:

$$A_S^5 = \alpha P_5', A_S^7 = -\alpha P_6' \simeq 0 \text{ and } A_S^8 = -\frac{\alpha}{2} P_8' \simeq 0 \quad (\alpha = \sqrt{3F_T F_S(1 - F_S)})$$

 \Rightarrow **symmetry relation** fixes completely A_S^4 to be $\frac{\alpha}{2} P_4'$.

Similarly if we measure $A_S^{4,7,8}$ symmetry fixes A_S^5 .

Constraints on the $A_S^{(i)}$ at maximum and zero of P_2

The requirement of *real solutions* when solving the quadratic S-wave relation at the position q_1^2 of the maximum of P_2 fixes completely the ratios $\mathbf{r}_S^{4,5} = \mathbf{A}_S^4/\mathbf{A}_S^5$ and $\mathbf{r}_S^{7,8} = \mathbf{A}_S^7/\mathbf{A}_S^8$ at \mathbf{q}_1^2 :

$$2\mathbf{A}_{S}^{4}(q_{1}^{2}) = \left[\mathbf{A}_{S}^{5}\sqrt{\frac{1-P_{1}}{1+P_{1}}}\right]_{q_{1}^{2}} \quad \text{and} \quad \mathbf{A}_{S}^{7}(q_{1}^{2}) = \left[2\mathbf{A}_{S}^{8}\sqrt{\frac{1-P_{1}}{1+P_{1}}}\right]_{q_{1}^{2}}.$$

Using the symmetry relations at the zero q_0^2 of P_2 ($q_0^{2SM}=4$ GeV²):

$$\mathbf{A_S}(\textit{q}_0^2) = \left[\frac{2\sqrt{F_L}(2\mathbf{A_S^4}(1+P_1)P_4' + \mathbf{A_S^5}(1-P_1)P_5'}{\sqrt{F_T}(1-P_1^2)}\right]_{\textit{q}_0^2}$$

In the absence of RHC ($P_1 \simeq 0$) the relation simplifies.

Conclusions

- The angular distribution of $B \to K\pi\ell\ell$ exhibit a set of 4 **symmetries** common to the P and S-wave sector.
- The symmetries imply **3 non trivial relations** among the J_i and \tilde{J}_i .
 - P-wave: Assuming no NP in weak phases we establish a relation between P₂ and P'_{4,5}, P₁. Also relations at the zero and maximum of P₂ are found that make explicit the impact of the anomaly of P'₅ in P₂.
 - S-wave: Only 4 out of the 6 S-wave observables are independent.
 We establish bounds but also strong correlations among them.
- P_2 contains not only the information of the zero of A_{FB} but the **position and value of its maximum** is sensitive to NP.
 - NP in SM-like operators shift the position keeping its value to 1/2.
 - RHC reduces the peak below 1/2.

Back-up slides

Phenomenological implications(I)

Consistency test on data compare $\mathbf{P_2^{exp}}$ with $\mathbf{P_2}=\mathbf{f}(\mathbf{P_1^{exp}},\mathbf{P_{4,5}^{\prime exp}})$ (assume: no new weak phases):

$$P_2 = \frac{1}{2} \left(P_4' P_5' + \frac{1}{\beta} \sqrt{(-1 + P_1 + P_4'^2)(-1 - P_1 + \beta^2 P_5'^2)} \right)$$

ullet If $P_2=-\epsilon$ and $P_4'=1+\delta$ ($P_1<-2\delta$) then ${f P_5'}\le -{f 2}\epsilon/({f 1}+\delta)$

2013:
$$\langle P_2 \rangle_{[4.3,8.68]} \sim -0.25$$
 and $\langle P_5' \rangle_{[4.3,8.68]} \sim -0.19$ approx. $\epsilon = -0.25, \ \langle P_5' \rangle_{[4.3,8.68]} \leq -0.42$

2015:
$$\langle P_2 \rangle_{[6,8]} \sim -0.24$$
 and $\langle P_5' \rangle_{[6,8]} \sim -0.5$ approx. $\epsilon = -0.24, \left< P_5' \right>_{[6,8]} \leq -0.4$

Now P_2 and P_5^\prime bins have the expected order! (in both [4,6] and [6,8] bins)

J. Matias (UAB) NP in radiative B-decays 4/5/15

22

[Becirevic, Taygudanov'12]

$$\begin{split} \tilde{J}_{1a}^{c} &= -\tilde{J}_{2a}^{c} &= \frac{3}{8} (|A_{0}^{\prime L}|^{2} + |A_{0}^{\prime R}|^{2}) |BW_{S}|^{2} \\ \tilde{J}_{1b}^{c} &= -\tilde{J}_{2b}^{c} &= \frac{3}{4} \sqrt{3} \mathrm{Re} \left[(A_{0}^{\prime L} A_{0}^{L*} + A_{0}^{\prime R} A_{0}^{R*}) BW_{S} BW_{P}^{*} \right], \\ \tilde{J}_{4} &= \frac{3}{4} \sqrt{\frac{3}{2}} \mathrm{Re} \left[(A_{0}^{\prime L} A_{\parallel}^{L*} + A_{0}^{\prime R} A_{\parallel}^{R*}) BW_{S} BW_{P}^{*} \right], \\ \tilde{J}_{5} &= \frac{3}{2} \sqrt{\frac{3}{2}} \mathrm{Re} \left[(A_{0}^{\prime L} A_{\parallel}^{L*} - A_{0}^{\prime R} A_{\parallel}^{R*}) BW_{S} BW_{P}^{*} \right], \\ \tilde{J}_{7} &= \frac{3}{2} \sqrt{\frac{3}{2}} \mathrm{Im} \left[(A_{0}^{\prime L} A_{\parallel}^{L*} - A_{0}^{\prime R} A_{\parallel}^{R*}) BW_{S} BW_{P}^{*} \right], \\ \tilde{J}_{8} &= \frac{3}{4} \sqrt{\frac{3}{2}} \mathrm{Im} \left[(A_{0}^{\prime L} A_{\parallel}^{L*} + A_{0}^{\prime R} A_{\parallel}^{R*}) BW_{S} BW_{P}^{*} \right]. \end{split}$$

Second S-wave relation parameters

The parameters entering the second S-wave relation are provided here:

$$\omega = \frac{3}{z_2} \qquad \rho = -4\frac{z_1}{z_2}$$

where

$$z_1 = \sqrt{F_T F_L} (-1 + F_S)$$

and

$$z_2 = \sqrt{F_T}\sqrt{(1 - F_S)(12A_S + 16F_L(1 - F_S) + 27F_S)}$$