Experimental assessment of charm resonances in \mathcal{B} -> $\mathcal{L}(*)$ ll – theory viewpoint

Roman Zwicky Edinburgh University

11-13 May b->sll in 2015 (Workshop-Edinburgh)

Charm resonances as a function of dilepton-pair momentum q²

experimental assessment of (charm) resonances

0) introduction [3 slides]

1) **narrow** resonances J/Ψ , $\Psi(2S)$ [1 slide]

2) **broad** resonances Ψ(3770),Ψ(4040), [4 slides] Ψ(4160),Ψ(4415)

3) charm background "continuum" DD-states [1 slide]

4) what we have learned from LHCb-measurement and why it is important [3 slides]

Main idea in general

- motivated ansatz at amplitude-level and then fit* same as experimentalists do resolve say K* in (Kπ)-data
- level of refinement of ansatz dependent on quality of data
 i.e. better data → refine ansatz
 (ansatz: fortunately we can learn a lot from e+e→hadrons)
- close to the resonance the charm contribution in amplitude:

$$\mathcal{A}(B \to K\ell\ell)|_{q^2 \simeq m_{\Psi}^2} = \frac{r_{\Psi}}{q^2 - m_{\Psi}^2 + im_{\Psi}\Gamma_{\Psi}} + \dots$$

 main goal: fit for residue rψ-phase and modulus question: phase with respect to what other amplitude?

* question of duality can only be assessed amplitude level (a priori)

Decomposition of amplitude

■ amplitude B→KII* decomposes into:

B) resonance

C) DD-states

* first consider $B \rightarrow K \parallel - new$ aspect in $B \rightarrow K^* \parallel :$ helicity amplitudes

Best of all worlds fit all discontinuities of charm amplitude

• get amplitude $A_c(q^2)$ if know analytic structure in q^2 by Cauchy thm integral rep:

$$\mathcal{A}_{c}(q^{2}) = \frac{1}{2\pi i} \int_{\Gamma} \frac{dt \mathcal{A}_{c}(t)}{t - q^{2} - i0} , \text{module subtractions}$$
$$= \frac{1}{\pi} \int_{\Gamma} \frac{dt \text{Disc}[\mathcal{A}_{c}](t)}{t - q^{2} - i0} , \text{on-shell charm}$$

lispersion relation

 A each contribution measured helps to test QCD and for more reliable description

1. Narrow resonances J/Ψ , $\Psi(2S)^*$

- narrow: $\Gamma \psi/m\psi \simeq 10^{-4}$ since below open charm (DD-threshold)
- isolated ansatz sufficient:

٢

$$\mathcal{A}(B \to K\ell\ell)|_{q^2 \simeq m_{\Psi}^2} = \frac{r_{\Psi}}{q^2 - m_{\Psi}^2 + im_{\Psi}\Gamma_{\Psi}} + ..$$

residue more detail: $r_{\Psi} \simeq \mathcal{A}(B \to K\Psi)\mathcal{A}^*(\Psi \to \ell\ell)$

known: $|\mathbf{r}\psi|$ (branching fraction) unknown: phase w.r.t. to penguin (please measure)*

• experimentally challenging (fine q²-resolution ...)

$$\frac{\text{resonance}}{\text{penguin}} \simeq 2 \cdot 10^3 |_{q^2 = m_{J/\Psi}^2}, \quad 3.3 \cdot 10^2 |_{q^2 = m_{\Psi(2S)}^2}$$

* $\Psi(2S)$ interferes with $\Psi(3770)$ — phase B partly known ...later

2. Broad resonances: $\Psi(3770), \Psi(4040), \Psi(4160), \Psi(4415)$

• at $q^2 > 4m_D^2$: DD-threshold opens

refast decay resonance resonance resonances

.... understanding ansatz ...

- $e^+e^- \rightarrow$ hadrons is a "*dreamland*" spectral function positive definite! background: easy to model and match to pQCD at high q²
- resonance overlap relative interference phases

...some confusions in community where phase comes from

• with phases: $\chi^2/dof = 1$ — without phases: $\chi^2/dof = 1.4$

why is it there?

 the same phase as in pion-form factor

$$\mathcal{A}^{\gamma^* \to \pi\pi} = \frac{|r_{\rho \to \pi\pi}|}{s - m_{\rho}^2 + im_{\rho}\Gamma_{\rho}(s)} + \frac{|r_{\omega \to \pi\pi}|e^{i\phi}}{s - m_{\omega}^2 + im_{\omega}\Gamma_{\omega}(s)}$$

known as Orsay phase (of same type)

e+e-→hadrons intermezzo finished - how does it help for B->KII ?

\ldots correct for production of Ψ resonances w.r.t. naive factorisation

• idea: **correct** for **Ψ-production** (residue physical)

$$\begin{aligned} \mathcal{A}(B \to \Psi K)|_{\text{fac}} &\sim f_{+}^{B \to K}(q^{2})\mathcal{A}(\Psi \to \ell \ell) \\ &\to f_{+}^{B \to K}(q^{2})\underbrace{\eta_{\Psi}}_{1+\text{non-fac}}\mathcal{A}(\Psi \to \ell \ell) \sim \mathcal{A}(B \to \Psi K) \end{aligned}$$

naive factorisation

full subprocess

3. future: how to get phase between resonant and non-resonant part ?

- might be difficult (not impossible) to fit charm background on top of large penguin contribution
- ...maybe simpler: switch off the penguin

focus: directly on b \rightarrow ccs : B \rightarrow DD K

angular analysis (one angle) should be able to fit **smooth** open charm background beginning at DD and get relative phase w.r.t. broad charm resonances

4. Look back What did we learn from LHCb measurement

added from backup slides since discussed intensely

Binned Br(B \rightarrow KII) high q²: a priori and a posteriori

ratio of Br(B→KII) using
 i) factorisation perturbative (no resonances)
 ii) factorisation (BES-data)
 vs data as function lower bin bdry s₀

$$\frac{\operatorname{Br}(B^+ \to K^+ \ell \ell)^{i}_{[s_0, s_1]}}{\operatorname{Br}(B^+ \to K^+ \ell \ell)^{fit-d}_{[s_0, s_1]}}$$

basically as good as data (by construction) -

hence duality violation are currently around 10% in practice for angular observables situation is more subtle

right-handed currents (RHC) vs non-universal polarisation in $B \rightarrow K^*II$

issue imminent from structure of helicity amplitudes

 $H_0^V \sim (C_9 - C_9') \hat{H}_0^V(q^2) + \dots, \quad H_{\parallel}^V \sim (C_9 - C_9') \hat{H}_{\parallel}^V(q^2) + \dots, \quad H_{\perp}^V \sim \sqrt{\lambda_{K^*}} (C_9 + C_9') \hat{H}_{\perp}^V(q^2) + \dots,$ RHC C₉'≠0 intertwined polarisation effects 0, ||, ⊥

• **polarisation universality:** fac and non-fac depend same way on pol.

S-state: J/ Ψ ok, Ψ (2S) okish, *P-state*: χ_{c1} broken *D-state*: Ψ (3370), Ψ (4160) ? — experimentally accessible

what is the pattern?

if polarisation universal then $Br_{L,tot}(B \rightarrow K^*II)$ good observable to test for right-handed currents^{*}

۲

 if polarisation universal and no RHC then resonance effect minimal in class of observables Hiller and RZ'13

e.g. **black** and **green** curve nearly **identical** even though green curve has 2.5 as much resonances! N.B. endpoint all curves asymptotes 1/3

* assumes effect same magnitude in $B \rightarrow K^*$ II (could be bit smaller or larger in reality)

What did we learn — (conclusions)

- phases are all aligned negative → -350% correction to fac. non-fac. correction/FSI alter phase
 → QCD and quark hadron duality under pressure
- using pQCD at high-q²: duality violation
 ca 10% with 1bin at high-q² for branching fraction
 for angular observables in B->K*II a question to be settled ...
- we've learned a lot please provide more data/fits
 b->ccs has wider implications in B-physics
 some of the standard SM treatment is put into question —

thanks for your attention

backup slides

Of current importance ... anomalies B->K*II et al

driven by zero of helicity amplitudes

$$\begin{split} I_{\perp}^{L,R} &= \left[(\mathcal{C}_{9} + \mathcal{C}_{9'}) \mp (\mathcal{C}_{10} + \mathcal{C}_{10'}) \right] \frac{V}{M_{B} + M_{K^{*}}} + \frac{2m_{b}}{q^{2}} \left(\mathcal{C}_{7} + \mathcal{C}_{7'} \right) T_{1} \\ &+ \text{long} - \text{distance} \end{split}$$

closer look

a) pronounced towards J/Ψ

b) photon penguin only $-C_{10}$ (no long-distance) not necessary

c) high q² charm very pronounced (tomorrow)

altogether suggests (at least a large part) in P₅' et al is due to charm

Moriond 2015 data

Straub's talk Moriond'15

- effect same sign as in naive fac. in "-" versus "0" helicity
- <u>my comment</u>: that's what
 B→ J/Ψ K* experimental
 angular analysis predicts
 for J/Ψ,Ψ(2S)-contributions

— implication for high q²-observables —

the unknown J/Ψ phase

$$\eta_{J/\Psi K} = |\eta_{J/\Psi K}| e^{i\delta_{J/\Psi K}} \simeq 1.4 e^{i\delta_{J/\Psi K}}$$

- to match/fit slop of pQCD charm $\delta_{J/\Psi} \simeq 0$ e.g. Khodjamirian et al'10 and others
- let's change phase to $\delta_{J/\Psi K} \simeq \pi$ and compare with Br(B→KII)

δ_{J/ΨK} ≃ π matched charm amplitude to SM at q² =0
 well but then slope of charm amplitude (not to be confused with rate) has wrong sign as w.r.t. to SM ⇒ more precise data binning

Binned Br(B \rightarrow KII) high q²: a priori and a posteriori

ratio of Br(B→KII) using
 i) factorisation perturbative (no resonances)
 ii) factorisation (BES-data)
 vs data as function lower bin bdry s₀

$$\frac{\operatorname{Br}(B^+ \to K^+ \ell \ell)^{i}_{[s_0, s_1]}}{\operatorname{Br}(B^+ \to K^+ \ell \ell)^{fit-d}_{[s_0, s_1]}}$$

for angular observables issue more subtle as their can be cancellations in ratio

right-handed currents (RHC) vs non-universal polarisation in $B \rightarrow K^*II$

issue imminent from structure of helicity amplitudes

 $H_0^V \sim (C_9 - C_9') \hat{H}_0^V(q^2) + \dots, \quad H_{\parallel}^V \sim (C_9 - C_9') \hat{H}_{\parallel}^V(q^2) + \dots, \quad H_{\perp}^V \sim \sqrt{\lambda_{K^*}} (C_9 + C_9') \hat{H}_{\perp}^V(q^2) + \dots,$ RHC C₉'≠0 intertwined polarisation effects 0, ||, ⊥

• **polarisation universality:** fac and non-fac depend same way on pol.

S-state: J/ Ψ ok, Ψ (2S) okish, *P-state*: χ_{c1} broken *D-state*: Ψ (3370), Ψ (4160) ? — experimentally accessible

what is the pattern?

if polarisation universal then $Br_{L,tot}(B \rightarrow K^*II)$ good observable to test for right-handed currents^{*}

۲

 if polarisation universal and no RHC then resonance effect minimal in class of observables Hiller and RZ'13

e.g. **black** and **green** curve nearly **identical** even though green curve has 2.5 as much resonances! N.B. endpoint all curves asymptotes 1/3

* assumes effect same magnitude in $B \rightarrow K^*$ II (could be bit smaller or larger in reality)

assessment from theory viewpoint

is it or isn't it all that surprising?

a) patrons
b) hadrons
c) linked dispersion integrals quark hadron duality

a) how large are partonic non-fac. corrections

- from pQCD alone not chance to resolve locally in q²
- at high q²: q² is a large scale can integrate out charm quarks so-called high-q² "OPE" Grinstein,Pirjol'04 Beylich,Buchalla,Feldmann'11

very brief

factorisation (BESII)

Lyon RZ'14

100% in our units

dim-3 vertex-corrections Hurth, Isidori, Ghinculov, Yao'03 Greub, Pilipp, Schupach'08

roughly -50% throughout q²domain N.B. large due to colorenhancement (not repeated higher orders) dim-5 spectator & soft gluon Beylich,Buchalla,Feldmann'11

small O(2%) QCDF consistent dim. suppression

• -50%-correction is nowhere near -350%

b) factorisation as a function of m_{Ψ}

• experimental information on $B \rightarrow J/\Psi K^{(*)}$ and $B \rightarrow \Psi(2S)K^{(*)}$ \Rightarrow quantify correction to factorisation: $\eta \psi = 1 + \text{non-fac}^{-1}$

- whereas corrections to J/Ψ, Ψ(2S) could be 40%, 80% "only" (order of vertex corrections),
 350% correction broad Ψ(3770) - Ψ(4415) on average - new result
- N.B magnitude 2.5 not a big surprise but that they
 i) all have "same sign" & ii) sign negative
 challenges quark-hadron duality^{*} (nominal correction 50% learned previous slide)

is it all QCD? Can we assess it? partially through

¹ depends on "choice" of Wilson coeff. - yet ratio of η 's is well defined!

c) dispersion relations and quark hadron duality (qhd)¹

• amplitude H(q²) **if** know analytic structure in q² by Cauchy thm integral rep:

$$H(q^2) = \frac{1}{2\pi i} \int_{\Gamma} \frac{dt H(t)}{t - q^2 - i0} \quad \text{, modulo subtractions}$$

• if $H^{pQCD}(s_0) \cong H^{QCD}(s_0)$ then quark hadron duality:

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{dt H^{pQCD}(t)}{t - q^2 - i0} \simeq \frac{1}{2\pi i} \int_{\Gamma} \frac{dt H^{QCD}(t)}{t - q^2 - i0}$$

• for amplitudes H(q²), Γ related to (in principle) experimentally accessible region²

¹ qhd-(violation) sometimes (Shifman et al) means OPE-violating term - here different usage

² not valid for decay rate (in this form) in general unless can write rate in terms of amplitude (e.g. inclusive decays) • analytic structure of charm amplitude cut starting at $4m_c^2$ poles at m_{J/Ψ^2} resp.

a) if information in all 3 regions \Rightarrow check whether microscopic theory is compatible b) **semi-global qhd**: approx equality of pQCD & QCD dispersion- \int holds in (sub)region

- e+e-→Ψ→e+e- "dreamland"
 a) information available in all regions
 b) semi-global qhd "works" in all three regions
- B→ K I+I a) no info available in region 3 (region 1 we may get ...)
 b) region 2 semi-global qhd does not seem to hold

hence:

- a must: check semi-global qhd region 1+2
- one possibility that region 3 (crossed process Ψ→B+K) compensates

recall: region 1 phases are as of now missing let's look at implications

3) possible consequences at low q² (yet) unknown $\delta_{J/\Psi K(*)}$ -phases