Experimental assessment of charm resonances in $\mathfrak{B}^{->} \boldsymbol{X} \mathbf{C}^{(*)}$ ll - theory viewpoint

Roman Zwicky
Edinburgh University
11-13 May b->sIl in 2015 (Workshop-Edinburgh)

Charm resonances as a function of dilepton-pair momentum $\mathbf{q}^{\mathbf{2}}$

K fast:

- light-cone methods LCSR, QCDF/SCET
\rangle

K slow:

- high-q2 "OPE" -endpoint relations
diagnostic shape
for charm
whole zoo of $J^{P C}=1^{--}$
$c \bar{c}$-states
- at microscopic level

electroweak penguin (also $\mathrm{O}_{7 \text {... }}$)
4-quark operators (also $\mathrm{O}_{3 . .6}$)

experimental assessment of (charm) resonances

0) introduction [3 slides]
1) narrow resonances $J / \psi, \Psi(2 S)$ [1 slide]
2) broad resonances $\psi(3770), \Psi(4040)$, [4 slides] $\psi(4160), \Psi(4415)$
3) charm background "continuum" DD-states [1 slide]
4) what we have learned from LHCb-measurement and why it is important [3 slides]

Main idea in general

- motivated ansatz at amplitude-level and then fit* same as experimentalists do resolve say K^{*} in (К π)-data
- level of refinement of ansatz dependent on quality of data i.e. better data \rightarrow refine ansatz
(ansatz: fortunately we can learn a lot from $e^{+} e^{-\rightarrow}$ hadrons)
- close to the resonance the charm contribution in amplitude:

$$
\left.\mathcal{A}(B \rightarrow K \ell \ell)\right|_{q^{2} \simeq m_{\Psi}^{2}}=\frac{r_{\Psi}}{q^{2}-m_{\Psi}^{2}+i m_{\Psi} \Gamma_{\Psi}}+. .
$$

- main goal: fit for residue r_{Ψ}-phase and modulus question: phase with respect to what other amplitude?
* question of duality can only be assessed amplitude level (a priori)

Decomposition of amplitude

- amplitude $\mathrm{B} \rightarrow \mathrm{KII}$ * decomposes into:

penguin
weak annihilation et al

resonance

DD-states (form factor)

- phases w.r.t. what: ideally between A) non-charm ("penguin")
B) resonance
C) DD-states
* first consider $B \rightarrow K I I-$ new aspect in $B \rightarrow K^{*} \| l$: helicity amplitudes

Best of all worlds fit all discontinuities of charm amplitude

- get amplitude $A_{c}\left(q^{2}\right)$ if know analytic structure in q^{2} by Cauchy thm integral rep:

$$
\begin{aligned}
\mathcal{A}_{c}\left(q^{2}\right) & =\frac{1}{2 \pi i} \int_{\Gamma} \frac{d t \mathcal{A}_{c}(t)}{t-q^{2}-i 0} \quad, \text { module subtractions } \\
& =\frac{1}{\pi} \int_{\Gamma} \frac{d t \operatorname{Disc}\left[\mathcal{A}_{c}\right](t)}{t-q^{2}-i 0} \underbrace{}_{\text {on-shell charm }}
\end{aligned}
$$

- $e^{+} e^{-\rightarrow}$ hadrons this is the case! - one can test against partonic $Q C D$ most fundamental test of duality which must and does work
\rightarrow each contribution measured helps to test QCD and for more reliable description

1. Narrow resonances $\mathrm{J} / \Psi, \Psi(2 \mathrm{~S})$ *

- narrow: $\Gamma \psi / m \psi \simeq 10^{-4}$ since below open charm (DD-threshold)
- isolated ansatz sufficient:

$$
\left.\mathcal{A}(B \rightarrow K \ell \ell)\right|_{q^{2} \simeq m_{\Psi}^{2}}=\frac{r_{\Psi}}{q^{2}-m_{\Psi}^{2}+i m_{\Psi} \Gamma_{\Psi}}+. .
$$

- residue more detail: $\quad r_{\Psi} \simeq \mathcal{A}(B \rightarrow K \Psi) \mathcal{A}^{*}(\Psi \rightarrow \ell \ell)$
known: $|r \psi|$ (branching fraction)
unknown: phase w.r.t. to penguin (please measure)*
- experimentally challenging (fine q^{2}-resolution ...)

$$
\left.\frac{\text { resonance }}{\text { penguin }} \simeq 2 \cdot 10^{3}\right|_{q^{2}=m_{J / \Psi}^{2}},\left.\quad 3.3 \cdot 10^{2}\right|_{q^{2}=m_{\Psi(2 S)}^{2}}
$$

* $\Psi(2 S)$ interferes with $\Psi(3770)$ - phase B partly known ..later

2. Broad resonances: $\Psi(3770), \Psi(4040), \Psi(4160), \Psi(4415)$

- at $q^{2}>4 m_{D}{ }^{2}$: DD-threshold opens
fast decay broad resonance overlapping resonances
- learn simpler system: $\mathrm{e}^{+} \mathrm{e}^{-\rightarrow}$ hadrons Lyon and RZ 1406.0566v1

Disc ~ Im[h]; BESII-data'PLB08

$\mathrm{Re}[\mathrm{h}]$ dispersion relation

.... understanding ansatz ...

- $\mathrm{e}^{+} \mathrm{e}^{-\rightarrow}$ hadrons is a "dreamland" spectral function positive definite!
 background: easy to model and match to pQCD at high q^{2}
- resonance overlap - relative interference phases

$$
\begin{gathered}
\operatorname{Disc}[\mathcal{A}] \sim \sum_{D \bar{D}}\left|\sum_{\Psi} \mathcal{A}^{\Psi \rightarrow D \bar{D}}\right|^{2}+\operatorname{Disc}\left[\mathcal{A}_{\mathrm{back}}\right] \\
\mathcal{A}^{e^{+} e^{-} \rightarrow D \bar{D}}(s) \sim \frac{\mathcal{A}(\Psi \rightarrow D D) \mathcal{A}^{*}(\Psi \rightarrow \ell \ell)}{s-m_{\Psi}^{2}+i m_{\Psi} \Gamma_{\Psi}(s)} e^{i \delta_{\Psi}}
\end{gathered}
$$

...some confusions in community where phase comes from

- with phases: $\chi^{2} / \mathrm{dof}=1$ - without phases: $\chi^{2 / d o f}=1.4$
why is it there?
- the same phase as in pion-form factor

$$
\mathcal{A}^{\gamma^{*} \rightarrow \pi \pi}=\frac{\left|r_{\rho \rightarrow \pi \pi}\right|}{s-m_{\rho}^{2}+i m_{\rho} \Gamma_{\rho}(s)}+\frac{\left|r_{\omega \rightarrow \pi \pi}\right| e^{i \phi}}{s-m_{\omega}^{2}+i m_{\omega} \Gamma_{\omega}(s)}
$$

ф known as Orsay phase (of same type)
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadrons intermezzo finished - how does it help for $\mathrm{B}->\mathrm{KII}$?

... correct for production of Ψ resonances w.r.t. naive factorisation

- idea: correct for $\boldsymbol{\Psi}$-production (residue physical)

$$
\begin{aligned}
\left.\mathcal{A}(B \rightarrow \Psi K)\right|_{\text {fac }} & \sim f_{+}^{B \rightarrow K}\left(q^{2}\right) \mathcal{A}(\Psi \rightarrow \ell \ell) \\
& \rightarrow f_{+}^{B \rightarrow K}\left(q^{2}\right) \underbrace{\eta_{\Psi}}_{1+\text { non-fac }} \mathcal{A}(\Psi \rightarrow \ell \ell) \sim \mathcal{A}(B \rightarrow \Psi K)
\end{aligned}
$$

in diagrams:

naive factorisation

full subprocess

3. future: how to get phase between resonant and non-resonant part ?

- might be difficult (not impossible) to fit charm background on top of large penguin contribution
- ...maybe simpler: switch off the penguin focus: directly on $b \rightarrow c c s: B \rightarrow D D K$
angular analysis (one angle) should be able to fit smooth open charm background beginning at DD and get relative phase w.r.t. broad charm resonances

4. Look back What did we learn from LHCb measurement

LHCb - PRL 111 (2013)

Fit for residues (non-factorisable) corrections

| Fit | $\eta_{\mathcal{B}} \quad \eta_{c}$ | $\eta_{\Psi(2 S)}$ | $\eta_{\Psi(3770)}$ | $\eta_{\Psi(4040)}$ | $\eta_{\Psi(4160)}$ | $\eta_{\Psi(4415)}$ | $\chi^{2} /$ d.o.f. | d.o.f. | pts | p-value |
| ---: | :---: | :---: | :--- | :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: |
| $a)$ | $1.02 \equiv 1$ | $\equiv 1$ | 3.59 | 99 | 117 | $\simeq 10^{-30}$ |
| $b)$ | $1.02-2.55$ | $\equiv 1$ | 1.334 | 98 | 117 | 1.5% |
| $c)$ | $0.77 \equiv 1$ | -1.3 | -7.2 | -1.9 | -4.6 | -3.0 | 1.169 | 94 | 117 | 12% |
| $d)$ | $1.00 \equiv 1$ | $3.8-5.1 i$ | $-0.1-2.3 i$ | $-0.5-1.2 i$ | $-3.0-3.1 i$ | $-4.5+2.3 i$ | 1.124 | 89 | 117 | 20% |
| | | $6.4 e^{-i 53.3^{\circ}} 2.2 .0 e^{-i 92^{\circ}}$ | $1.3 e^{-i 111^{\circ}}$ | $4.3 e^{-i 135^{\circ}{ }^{\circ}}$ | $5.1 e^{i 153^{\circ}}$ | | | | | |

added from backup slides since discussed intensely

Binned $\operatorname{Br}(\mathrm{B} \rightarrow \mathrm{KII})$ high $\mathbf{q}^{\mathbf{2}}$: a priori and a posteriori

- ratio of $\mathrm{Br}(\mathrm{B} \rightarrow \mathrm{KII})$ using
i) factorisation perturbative (no resonances)
ii) factorisation (BES-data)
vs data as function lower bin bdry so

$$
\frac{\operatorname{Br}\left(B^{+} \rightarrow K^{+} \ell \ell\right)_{\left[s_{0}, s_{1}\right]}^{i, i i)}}{\operatorname{Br}\left(B^{+} \rightarrow K^{+} \ell \ell\right)_{\left[s_{0}, s_{1}\right]}^{f i t-d)}}
$$

basically as good as data (by construction)

hence duality violation are currently around 10% in practice for angular observables situation is more subtle

right-handed currents (RHC) vs non-universal polarisation in $B \rightarrow K^{*} \|$

- issue imminent from structure of helicity amplitudes
$H_{0}^{V} \sim\left(C_{9}-C_{9}^{\prime}\right) \hat{H}_{0}^{V}\left(q^{2}\right)+. ., \quad H_{\|}^{V} \sim\left(C_{9}-C_{9}^{\prime}\right) \hat{H}_{\|}^{V}\left(q^{2}\right)+. ., \quad H_{\perp}^{V} \sim \sqrt{\lambda_{K^{*}}}\left(C_{9}+C_{9}^{\prime}\right) \hat{H}_{\perp}^{V}\left(q^{2}\right)+. .$,
RHC Cg' $\neq 0$ intertwined polarisation effects $0, \|, \perp$
polarisation universality: fac and non-fac depend same way on pol.

$$
\frac{\left|H_{0}^{V}\right|}{\left|H_{\|}^{V}\right|} \stackrel{?}{\simeq} \frac{\left|f_{0}^{V}\right|}{\left|f_{\|}^{0}\right|} \quad \text { for some } q^{2}, f \text { form factor }
$$ universal

S-state: J/ Ψ ok, $\Psi(2 S)$ okish,
P-state: $\chi_{\mathrm{c} 1}$ broken
D-state: $\Psi(3370), \Psi(4160) ?$ - experimentally accessible

> what is the pattern?

- if polarisation universal then $B r L$,tot $\left(B \rightarrow K^{*} \|\right)$ good observable to test for right-handed currents*

- if polarisation universal and no RHC then resonance effect minimal in class of observables Hiller and RZ',13
 has 2.5 as much resonances!
N.B. endpoint all curves asymptotes $1 / 3$

[^0]
What did we learn - (conclusions)

- modulus $r_{B->\psi(\text { broad })(->\|) K}$ is 2.5 times larger than factorisation by itself in retrospect not surprising !
$\xrightarrow{J / \Psi} \quad \Psi(2 S) \quad \Psi(3370) . . \Psi(4415) \longrightarrow m_{\Psi} / \mathrm{GeV}$
- phases are all aligned negative $\boldsymbol{\rightarrow}-350 \%$ correction to fac. non-fac. correction/FSI alter phase
\rightarrow QCD and quark hadron duality under pressure
- using pQCD at high-q² : duality violation ca 10% with 1 bin at high- q^{2} for branching fraction for angular observables in B->K*ll a question to be settled ..
- we've learned a lot - please provide more data/fits b->ccs has wider implications in B-physics
- some of the standard SM treatment is put into question thanks for your attention

backup slides

Of current importance ... anomalies B->K*ll et al

$$
A_{F B}=\frac{\Gamma\left(\cos \theta_{B C^{+}}>0\right)-\Gamma\left(\cos \theta_{B C^{\prime}}<0\right)}{\Gamma\left(\cos \theta_{B C^{\prime}}>0\right)+\Gamma\left(\cos \theta_{B C^{\prime}}<0\right)}
$$

$$
\begin{aligned}
H_{\perp}^{L, R}= & {\left[\left(\mathcal{C}_{9}+\mathcal{C}_{9^{\prime}}\right) \mp\left(\mathcal{C}_{10}+\mathcal{C}_{1^{\prime}}\right)\right] \frac{V}{M_{B}+M_{K^{*}}}+\frac{2 m_{b}}{q^{2}}\left(\mathcal{C}_{7}+\mathcal{C}_{7^{\prime}}\right) T_{1} } \\
& + \text { long - distance }
\end{aligned}
$$

a) pronounced towards J / Ψ
b) photon penguin only - C_{10} (no long-distance) not necessary
c) high q^{2} charm very pronounced (tomorrow)
altogether suggests (at least a large part) in $\mathrm{P}_{5}{ }^{\prime}$ et al is due to charm

- Moriond 2015 data

Straub's talk Moriond'15

- effect same sign as in naive fac. in "-" versus "0" helicity
- my comment: that's what $B \rightarrow J / \Psi K^{*}$ experimental angular analysis predicts for $J / \Psi, \Psi(2 S)$-contributions

— implication for high $\mathbf{q}^{\mathbf{2}}$-observables -

the unknown J/ Ψ phase

$$
\eta_{J / \Psi K}=\left|\eta_{J / \Psi K}\right| e^{i \delta_{J / \Psi K}} \simeq 1.4 e^{i \delta_{J / \Psi K}}
$$

- to match/fit slop of pQCD charm $\boldsymbol{\delta}_{J / \boldsymbol{\mu}} \simeq \mathbf{0}$ e.g. Khodjamirian et al' 10 and others
- let's change phase to $\delta_{J / \psi K} \simeq \pi$ and compare with $\operatorname{Br}(\mathrm{B} \rightarrow \mathrm{KII})$

- $\delta_{J / \Psi K} \simeq \pi$ matched charm amplitude to SM at $q^{2}=0$
well but then slope of charm amplitude (not to be confused with rate) has wrong sign as w.r.t. to $S M \Rightarrow$ more precise data binning

Binned $\operatorname{Br}(\mathrm{B} \rightarrow \mathrm{KII})$ high $\mathbf{q}^{\mathbf{2}}$: a priori and a posteriori

- ratio of $\mathrm{Br}(\mathrm{B} \rightarrow \mathrm{KII})$ using
i) factorisation perturbative (no resonances)
ii) factorisation (BES-data)
vs data as function lower bin bdry so
basically as good as data (by construction)

for angular observables issue more subtle as their can be cancellations in ratio

right-handed currents (RHC) vs non-universal polarisation in $B \rightarrow K^{*} \|$

- issue imminent from structure of helicity amplitudes
$H_{0}^{V} \sim\left(C_{9}-C_{9}^{\prime}\right) \hat{H}_{0}^{V}\left(q^{2}\right)+. ., \quad H_{\|}^{V} \sim\left(C_{9}-C_{9}^{\prime}\right) \hat{H}_{\|}^{V}\left(q^{2}\right)+. ., \quad H_{\perp}^{V} \sim \sqrt{\lambda_{K^{*}}}\left(C_{9}+C_{9}^{\prime}\right) \hat{H}_{\perp}^{V}\left(q^{2}\right)+. .$,
RHC Cg' $\neq 0$ intertwined polarisation effects $0, \|, \perp$
polarisation universality: fac and non-fac depend same way on pol.

$$
\frac{\left|H_{0}^{V}\right|}{\left|H_{\|}^{V}\right|} \stackrel{?}{\simeq} \frac{\left|f_{0}^{V}\right|}{\left|f_{\|}^{0}\right|} \quad \text { for some } q^{2}, f \text { form factor }
$$ universal

S-state: J/ Ψ ok, $\Psi(2 S)$ okish,
P-state: $\chi_{\mathrm{c} 1}$ broken
D-state: $\Psi(3370), \Psi(4160) ?$ - experimentally accessible

> what is the pattern?

- if polarisation universal then $B r L$,tot $\left(B \rightarrow K^{*} \|\right)$ good observable to test for right-handed currents*

- if polarisation universal and no RHC then resonance effect minimal in class of observables Hiller and RZ',13
 has 2.5 as much resonances!
N.B. endpoint all curves asymptotes $1 / 3$

[^1]
assessment from theory viewpoint

is it or isn't it all that surprising?
a) patrons
b) hadrons
c) linked dispersion integrals quark hadron duality

a] how large are partonic non-fac. corrections

- from pQCD alone not chance to resolve locally in q^{2}
- at high $q^{2}: q^{2}$ is a large scale can integrate out charm quarks so-called high-q2 "OPE" Grinstein,Pirjol'04 Beylich,Buchalla,Feldmann'11

factorisation (BESII)
Lyon RZ'14

dim-3 vertex-corrections
Hurth, Isidori, Ghinculov, Yao’03
Greub, Pilipp, Schupach'08
100% in our units
small O(2\%) QCDF consistent dim. suppression
N.B. large due to colorenhancement
(not repeated higher orders)
- -50\%-correction is nowhere near -350\%

b) factorisation as a function of m_{ψ}

- experimental information on $\mathrm{B} \rightarrow \mathrm{J} / \Psi \mathrm{K}{ }^{(*)}$ and $\left.\mathrm{B} \rightarrow \Psi(2 \mathrm{~S}) \mathrm{K}^{*}\right)$
\Rightarrow quantify correction to factorisation: $\eta_{\psi}=1+$ non-fac ${ }^{1}$

$$
\xrightarrow{J / \Psi} \quad \underset{(2 S)}{ } \quad \Psi(3370) . . \Psi(4415) \quad m_{\Psi} / \mathrm{GeV}
$$

1. whereas corrections to $\mathrm{J} / \Psi, \Psi(2 \mathrm{~S})$ could be $40 \%, 80 \%$ "only" (order of vertex corrections),
$\mathbf{3 5 0 \%}$ correction broad $\boldsymbol{\Psi (3 7 7 0)} \boldsymbol{-} \boldsymbol{\Psi}(4415)$ on average - new result
2. N.B magnitude 2.5 not a big surprise but that they
i) all have "same sign" \& ii) sign negative challenqes quark-hadron dualitv* (nominal correction 50% learned previous slide)
is it all QCD? Can we assess it? partially through
[^2]
c) dispersion relations and quark hadron duality (qhd) ${ }^{1}$

- amplitude $\mathrm{H}\left(\mathrm{q}^{2}\right)$ if know analytic structure in q^{2} by Cauchy thm integral rep:

$$
H\left(q^{2}\right)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{d t H(t)}{t-q^{2}-i 0} \quad \text {, modulo subtractions }
$$

- if $H^{P Q C D}\left(S_{0}\right) \cong H^{Q C D}\left(S_{0}\right)$ then quark hadron duality:

$$
\frac{1}{2 \pi i} \int_{\Gamma} \frac{d t H^{p Q C D}(t)}{t-q^{2}-i 0} \simeq \frac{1}{2 \pi i} \int_{\Gamma} \frac{d t H^{Q C D}(t)}{t-q^{2}-i 0}
$$

- for amplitudes $H\left(q^{2}\right)$, Г related to (in principle) experimentally accessible region²
${ }^{1}$ qhd-(violation) sometimes (Shifman et al) means OPE-violating term - here different usage
2 not valid for decay rate (in this form) in general unless can write rate in terms of amplitude (e.g. inclusive decays)
- analytic structure of charm amplitude cut starting at $4 \mathrm{~m}^{2}$ poles at $\mathrm{m}_{\mathrm{J}} / \psi^{2}$ resp.

a) if information in all 3 regions \Rightarrow check whether microscopic theory is compatible
b) semi-global qhd: approx equality of pQCD \& QCD dispersion- \int holds in (sub)region

a) information available in all regions
b) semi-global qhd "works" in all three regions
- $\mathrm{B} \rightarrow \mathrm{KI}+\mathrm{I}^{-}$
a) no info available in region 3 (region 1 we may gét ...) $)^{\substack{10 \\ q^{2}\left[\operatorname{Cov}^{2}\right]}}$
b) region 2 semi-global qhd does not seem to hold

hence:

- a must: check semi-global qhd region 1+2
- if does not work:
one possibility that region 3 (crossed process $\boldsymbol{\Psi} \rightarrow \mathbf{B + K}$) compensates

> recall: region 1 phases are as of now missing let's look at implications

3) possible consequences at low q^{2} (yet) unknown $\delta_{/ / 4 k\left({ }^{*}\right)}$-phases

[^0]: * assumes effect same magnitude in $B \rightarrow K^{*} l l$ (could be bit smaller or larger in reality)

[^1]: * assumes effect same magnitude in $B \rightarrow K^{*} l l$ (could be bit smaller or larger in reality)

[^2]: ${ }^{1}$ depends on "choice" of Wilson coeff. - yet ratio of n's is well defined!

