Time dependence in $B \rightarrow V\ell\ell$

Sébastien Descotes-Genon

Laboratoire de Physique Théorique CNRS & Université Paris-Sud, 91405 Orsay, France

Rare B-decays in 2015 experiment and theory Univ. of Edinburgh, 13 May 2015

New observables for $b \rightarrow s\ell\ell$

Need for new $b \rightarrow s\ell\ell$ observables

- cross-check hadronic and/or NP contributions
- try different incoming and outgoing states
- more information on $B \rightarrow V\ell\ell$?

transversity amplitudes, but redundancy in the information

• Angular analysis of $B \to V\ell\ell$ provides interferences between

- Add another phase/amplitude to interfere and lift the redundancy ?
- Similar to CP-violation in *B*-decays: interference between decay and mixing adds a lot of information compared to decay alone

Time-dependent analysis of $B \rightarrow V\ell\ell$ where V decays into a CP-eigenstate

SDG and J. Virto, JHEP 1504 (2015) 045 [1502.05509]

Decays of interest

Need V to decay into CP-eigenstate

- Not possible for flavour specific decays $B_d \to K^{*0} (\to K^- \pi^+) \ell^+ \ell^-$
- Accessible via flavour non-specific decays

Three main examples in the following

$$\begin{array}{ccc} B_d & \rightarrow & K^*(\rightarrow K_S\pi^0)\ell^+\ell^- \\ B_s & \rightarrow & \phi(\rightarrow K_SK_L)\ell^+\ell^- \\ B_s & \rightarrow & \phi(\rightarrow K^+K^-)\ell^+\ell^- \end{array}$$

Last one already studied at LHCb (time integrated)

JHEP 1307, 084 (2013)

Kinematics

For untagged flavour-non-specific decays

- ullet no possibility of distinguishing between B and $ar{B}$ decays
- need for consistent kinematic conventions
- the angles cannot be defined with respect to information on the flavour of the initial B (contrary to flavour-specific decays)

$$\frac{d\Gamma[B \to V(\to M_1 M_2)\ell^+\ell^-]}{ds \ d\cos\theta_\ell \ d\cos\theta_M \ d\phi} = \sum_i J_i(s) f_i(\theta_\ell, \theta_M, \phi)$$

$$\frac{d\Gamma[\bar{B} \to \bar{V}(\to \bar{M}_1 \bar{M}_2)\ell^+\ell^-]}{ds \ d\cos\theta_\ell \ d\cos\theta_M \ d\phi} = \sum_i \zeta_i \bar{J}_i(s) f_i(\theta_\ell, \theta_M, \phi)$$

$$\theta_\ell$$

- $f_i(\theta_\ell, \theta_M, \phi)$ are kinematical functions
- *J* interf. of A_X and A_Y , with $X, Y \in \{L0, R0, L||, R||, L \perp, R \perp, t, S\}$
- \bar{J} with $\bar{A}_X = A_X(\bar{B} \to \bar{M}_1 \bar{M}_2 \ell \ell) = A_X|_{\phi_{wk} \to -\phi_{wk}}$
- $\zeta_i = 1$ for i = 1s, 1c, 2s, 2c, 3, 4, 7, $\zeta_i = -1$ for i = 5, 6s, 6c, 8, 9

Two CP-conjugate ampltudes

For $M_1 M_2$ CP eigenstate, two CP-related amplitudes

Theoretical: CP-related amplitudes

$$ar{A}_X = A_X (ar{B}
ightarrow ar{M}_1 ar{M}_2 \ell \ell) = \left. A_X
ight|_{\phi_{Wk}
ightarrow - \phi_{Wk}}$$

Phenomenological: Decay amplitude into the same final state

$$\widetilde{A}_X = A_X(\overline{B} \to M_1 M_2 \ell \ell)$$

From [Dunietz et al. 1991] transversity analysis for $B o A(o A_1A_2)C(o C_1C_2)$

$$\widetilde{A}_X = \eta_X \overline{A}_X$$
 $\eta_{L0,L||,R0,R||,t} = \eta$ $\eta_{L\perp,R\perp,S} = -\eta$ $\eta = 1$ so that $\widetilde{J}_i = \zeta_i \overline{J}_i$, and $d\Gamma[\overline{B} o \overline{V}(o \overline{M}_1 \overline{M}_2)\ell^+\ell^-]$ involves \widetilde{J}_i

Untagged $d\Gamma(B \to V\ell\ell) + d\Gamma(\bar{B} \to \bar{V}\ell\ell)$ yields $J_i + J_i = J_i + \zeta_i \bar{J}_i$, with both CP-conserving $(\zeta_i = 1)$ and CP-violating quantities $(\zeta_i = -1)$

Time dependence

Time-dependence of decay amplitudes is straightforward, involving decays into the same CP-eigenstate

$$egin{array}{lll} A_X(t) &=& A_X(B(t)
ightarrow V(
ightarrow f_{CP})
ightarrow \ell^+\ell^-) = g_+(t)A_X + rac{q}{
ho}g_-(t)\widetilde{A}_X \; , \ & \widetilde{A}_X(t) &=& A_X(ar{B}(t)
ightarrow V(
ightarrow f_{CP})\ell^+\ell^-) = rac{p}{q}g_-(t)A_X + g_+(t)\widetilde{A}_X \; , \end{array}$$

where $g_{\pm}(t)$ are time-evolution functions and $q/p=e^{i\phi}$

Time dependence of angular coefficients is given by

$$J_{i}(t) + \widetilde{J}_{i}(t) = e^{-\Gamma t} \Big[(J_{i} + \widetilde{J}_{i}) \cosh(y\Gamma t) - h_{i} \sinh(y\Gamma t) \Big]$$

$$J_{i}(t) - \widetilde{J}_{i}(t) = e^{-\Gamma t} \Big[(J_{i} - \widetilde{J}_{i}) \cos(x\Gamma t) - s_{i} \sin(x\Gamma t) \Big]$$

- $y = \Delta\Gamma/(2\Gamma)$ (small for B_d and B_s)
- $x = \Delta m/\Gamma$ ($x_d \simeq 0.77, x_s \simeq 27$)

Typical observables

$$J_{i}(t) + \widetilde{J}_{i}(t) = e^{-\Gamma t} \Big[(J_{i} + \widetilde{J}_{i}) \cosh(y \Gamma t) - h_{i} \sinh(y \Gamma t) \Big] ,$$

$$J_{i}(t) - \widetilde{J}_{i}(t) = e^{-\Gamma t} \Big[(J_{i} - \widetilde{J}_{i}) \cos(x \Gamma t) - s_{i} \sin(x \Gamma t) \Big] ,$$

Similarly to CP-violation in interference between mixing and decay, new observables from interf between 2 decay amplitudes and mixing

$$J_{8} = \frac{1}{\sqrt{2}} \beta_{\ell}^{2} \left[\operatorname{Im}(A_{0}^{L} A_{\perp}^{L^{*}} + A_{0}^{R} A_{\perp}^{R^{*}}) \right],$$

$$\widetilde{J}_{8} = \frac{1}{\sqrt{2}} \beta_{\ell}^{2} \left[\operatorname{Im}(\widetilde{A_{0}^{L}} \widetilde{A_{\perp}^{L^{*}}} + \widetilde{A_{0}^{R}} \widetilde{A_{\perp}^{R^{*}}}) \right] = -\frac{1}{\sqrt{2}} \beta_{\ell}^{2} \left[\operatorname{Im}(\overline{A_{0}^{L}} \overline{A_{\perp}^{L^{*}}} + \overline{A_{0}^{R}} \overline{A_{\perp}^{R^{*}}}) \right],$$

$$h_{8} = \frac{1}{\sqrt{2}} \beta_{\ell}^{2} \operatorname{Im}[e^{i\phi} \{ \widetilde{A_{0}^{L}} A_{\perp}^{L^{*}} + \widetilde{A_{0}^{R}} A_{\perp}^{R^{*}} \} + e^{-i\phi} \{ A_{0}^{L} \widetilde{A_{\perp}^{L^{*}}} + A_{0}^{R} \widetilde{A_{\perp}^{R^{*}}} \} \right]$$

$$s_{8} = -\frac{1}{\sqrt{2}} \beta_{\ell}^{2} \operatorname{Re}[e^{i\phi} \{ \widetilde{A_{0}^{L}} A_{\perp}^{L^{*}} + \widetilde{A_{0}^{R}} A_{\perp}^{R^{*}} \} - e^{-i\phi} \{ A_{0}^{L} \widetilde{A_{\perp}^{L^{*}}} + A_{0}^{R} \widetilde{A_{\perp}^{R^{*}}} \} \right]$$

 h_i 's identify with J_i 's in the limit where weak phases neglected

Sorting out observables

$$J_i(t) + \widetilde{J}_i(t) = e^{-\Gamma t} \Big[(J_i + \widetilde{J}_i) \cosh(y \Gamma t) - h_i \sinh(y \Gamma t) \Big] ,$$

$$J_i(t) - \widetilde{J}_i(t) = e^{-\Gamma t} \Big[(J_i - \widetilde{J}_i) \cos(x \Gamma t) - s_i \sin(x \Gamma t) \Big] ,$$

- $y \ll 1$: h_i difficult to extract
- from $(d\Gamma + d\bar{\Gamma})/dq^2$, ine gets $3(2h_{1s} + h_{1c}) (2h_{2s} + h_{2c})$ (boils down to the corresponding J's if $\phi \to 0$)
- s_i for i = 1s, 1c, 2s, 2c, 3, 4, 7: CP-asymmetries $J_i \bar{J}_i$
- s_i for i = 5, 6s, 6c, 8, 9: CP-averaged angular coefficients $J_i + \bar{J}_i$.

If vanishing phases ($\phi \rightarrow 0$, decay amplitudes real)

- s_i for i = 1s, 1c, 2s, 2c, 3, 4, 5, 6s, 6c vanish: $s_i \sim \text{Im}(e^{i\phi}\bar{A}_X A_Y^*)$
- $s_7 = 0$ (no phases in decay amplitudes is enough)
- $(J_i J_i)_{i=8,9}$ vanish whereas $s_{8,9}$ expected to be large

 \Longrightarrow s_8 and s_9 are the most interesting coefficients

New information?

Not all observables contain new information : there is some redundancy already in the J_i 's

[Matias, Mescia, Ramon, Virto 2012]

 In the flavour-specific case (massless case without scalar contributions), unitary transformation U of

$$n_i = \begin{pmatrix} A_i^L \\ \sigma_i A_i^{R*} \end{pmatrix} \rightarrow U n_i \qquad \sigma_0 = \sigma_{||} = 1, \sigma_{\perp} = -1$$

leave the angular coefficient J_i unchanged: only observables invariant under these unitarity transformations can be measured

- ullet in the limit of vanishing weak phases, h_i do not contain genuinely new information compared to the J_i
 - (but useful as independent cross-checks of J_i measurements)
- s_{8.9} contain genuinely new pieces of information

Time dependent versus time integrated

From time-integrated observables? Time integration different for hadronic machines and *B*-factories (quantum entanglement)

$$\langle X \rangle_{\text{Hadronic}} = \int_0^\infty e^{-\Gamma t} \dots \qquad \langle X \rangle_{\text{B-factory}} = \int_{-\infty}^\infty e^{-\Gamma |t|} \dots$$

$$\langle J_{i} + \widetilde{J}_{i} \rangle_{\text{Hadronic}} = \frac{1}{\Gamma} \left[\frac{1}{1 - y^{2}} \times (J_{i} + \widetilde{J}_{i}) - \frac{y}{1 - y^{2}} \times h_{j} \right] ,$$

$$\langle J_{i} - \widetilde{J}_{i} \rangle_{\text{Hadronic}} = \frac{1}{\Gamma} \left[\frac{1}{1 + x^{2}} \times (J_{i} - \widetilde{J}_{i}) - \frac{x}{1 + x^{2}} \times s_{j} \right] ,$$

$$\langle J_{i} + \widetilde{J}_{i} \rangle_{\text{B-factory}} = \frac{2}{\Gamma} \frac{1}{1 - y^{2}} [J_{i} + \widetilde{J}_{i}] , \qquad \langle J_{i} - \widetilde{J}_{i} \rangle_{\text{B-factory}} = \frac{2}{\Gamma} \frac{1}{1 + x^{2}} [J_{i} - \widetilde{J}_{i}] .$$

 s_i and h_i from time-integrated measurements

- \bullet only at hadronic machines (but tagging needed for s_i)
- suppressed by factors of y or $1/(1+x^2)$

Optimised observables from time dependence

 s_8, s_9

- contain information that is not accessible otherwise
- come from $J_i \widetilde{J}_i$ and require tagging
- are coefficients of $sin(x\Gamma t)$ and require time-dependent analysis $\Longrightarrow B$ -factory environment ?

It is possible to define optimised observables at large hadronic recoil (limited sensitivity to form factors)

$$Q_8^- = rac{s_8}{\sqrt{-2(J_{2c} + \widetilde{J}_{2c})[2(J_{2s} + \widetilde{J}_{2s}) - (J_3 + \widetilde{J}_3)]}},$$

$$Q_9 = rac{s_9}{2(J_{2s} + \widetilde{J}_{2s})}.$$

similarly to what is done from J_i to P_i

Q_8, Q_9 : SM predictions

- In SM, $Q_9 \simeq -1$, is a test of RHC
- In SM, zero of Q₈ given at LO by:

$$rac{s_0}{m_B^2} \simeq rac{-2\mathcal{C}_7(2\mathcal{C}_7 + \mathcal{C}_9)}{\mathcal{C}_{10}^2 + (2\mathcal{C}_7 + \mathcal{C}_9)\mathcal{C}_9}$$

(modified by RHC)

 Similar plots for the other modes

Q_8, Q_9 : General NP scenarios

- LHC: C_7, C_9, C_{10} only
- \bullet RHC: $\mathcal{C}_{7'}, \mathcal{C}_{9'}, \mathcal{C}_{10'}$ only
- General NP: All
- ullet varying in 3 σ ranges of

[SDG, Matias, Virto 2013]

Q_8, Q_9 : Benchmark points

- A: C_7 , C_9 best fit
- $\bullet \ B \colon \mathcal{C}_9, \mathcal{C}_{9'} \ best \ fit$
- C: $C_{9(')}$, $C_{10(')}$ scenarios
- D: general best fit

Conclusion

Time-dependent analysis of $B \rightarrow V\ell\ell$ with V into CP eigenstate

- Mixing allowing richer pattern of interferences
- Concerns both $B_d \to K^*(\to K_S\pi^0)\ell^+\ell^-$ and $B_s \to \phi(\to K_SK_L)\ell^+\ell^-$, $B_s \to \phi(\to K^+K^-)\ell^+\ell^-$
- Two interesting new observables s_8 and s_9
- Require both tagging and time-dependent analysis

Optimised versions Q_8 and Q_9

- Accurate predictions in the SM
- Value of Q₉ good test of right-handed currents
- Good sensitivity to NP scenarios

Experimental feasibility of such measurements?