b->sll at (very) low q^{2}

Sebastian Jäger
$\mathbf{U S}_{\text {of Sussex }}^{\text {University }}$

Workshop "Rare B decays in 2015: experiment and theory"
Edinburgh, Tuesday 12 May 2015

Why rare decays

New particles' couplings tend to mediate flavour changes (they do in all the "natural" proposals for TeV physics)

At least they will have CKM-like flavour violations (minimal flavour violation), so will always affect rare decays.

Of course BSM particles will mediate flavour-conserving processes, too.

Rate: q^{2} dependence (qualitative)

Rate: q^{2} dependence (qualitative)

"low q^{2} / large recoil"

This talk is about picking up the photon pole
Specific sensitivity to C_{7} (constrained from b->s gamma) and C_{7} ' (well-motivated BSM effect)

Related to $B->K^{*} Y$ (completely modelindependently)

Unlike other observables, form factor ratios play almost not role.

Main issue is to rule out (or control) sizable effects from the nonleptonic hamiltonian (charm loops etc). Good complementarity of QCDF + LCSR

Optimised angular observables

=functions of the angular coefficients for which form factors drop out in the heavy quark limit if perturbative QCD corrections neglected.
E.g.
neglecting strong phase differences [tiny; take into account in numerics]
$P_{1} \equiv \frac{I_{3}+\bar{I}_{3}}{2\left(I_{2 s}+\bar{I}_{2 s}\right)}=\frac{-2 \operatorname{Re}\left(H_{V}^{+} H_{V}^{-*}+H_{A}^{+} H_{A}^{-*}\right)}{\left|H_{V}^{+}\right|^{2}+\left|H_{V}^{-}\right|^{2}+\left|H_{A}^{+}\right|^{2}+\left|H_{A}^{-}\right|^{2}}$
$P_{3}^{C P} \equiv-\frac{I_{9}-\bar{I}_{9}}{4\left(I_{2 s}+\bar{I}_{2 s}\right)}=-\frac{\operatorname{Im}\left(H_{V}^{+} H_{V}^{-*}+H_{A}^{+} H_{A}^{-*}\right)}{\left|H_{V}^{+}\right|^{2}+\left|H_{V}^{-}\right|^{2}+\left|H_{A}^{+}\right|^{2}+\left|H_{A}^{-}\right|^{2}}$
$P_{5}^{\prime}=\frac{\operatorname{Re}\left[\left(H_{V}^{-}-H_{V}^{+}\right) H_{A}^{0 *}+\left(H_{A}^{-}-H_{A}^{+}\right) H_{V}^{0 *}\right]}{\sqrt{\left(\left|H_{V}^{0}\right|^{2}+\left|H_{A}^{0}\right|^{2}\right)\left(\left|H_{V}^{+}\right|^{2}+\left|H_{V}^{-}\right|^{2}+\left|H_{A}^{+}\right|^{2}+\left|H_{A}^{-}\right|^{2}\right)}}$
where

$$
\begin{aligned}
C_{9, \perp} & =C_{9}^{\mathrm{eff}}\left(q^{2}\right)+\frac{2 m_{b} m_{B}}{q^{2}} C_{7}^{\mathrm{eff}} \\
C_{9, \|} & =C_{9}^{\mathrm{eff}}\left(q^{2}\right)+\frac{2 m_{b} E}{q^{2}} C_{7}^{\mathrm{eff}}
\end{aligned}
$$

C_{7} and C_{9} opposite sign
destructive interference enhances vulnerability to anything that violates the large-energy form factor relations (or more generally underestimated errors on form facors
much less of an issue in than to P_{1} or $\mathrm{P}_{3} \mathrm{CP}$ than eg in P_{5} (and others)

Optimised angular observables

=functions of the angular coefficients for which form factors drop out in the heavy quark limit if perturbative QCD corrections neglected.
E.g.
neglecting strong phase differences [tiny; take into account in numerics]
$P_{1} \equiv \frac{I_{3}+\bar{I}_{3}}{2\left(I_{2 s}+\bar{I}_{2 s}\right)} \stackrel{\downarrow}{=} \frac{-2 \operatorname{Re}\left(H_{V}^{+} H_{V}^{-*}+H_{A}^{+} H_{A}^{-*}\right)}{\left|H_{V}^{+}\right|^{2}+\left|H_{V}^{-}\right|^{2}+\left|H_{A}^{+}\right|^{2}+\left|H_{A}^{-}\right|^{2}}$
$P_{3}^{C P} \equiv-\frac{I_{9}-\bar{I}_{9}}{4\left(I_{2 s}+\bar{I}_{2 s}\right)}=-\frac{\operatorname{Im}\left(H_{V}^{+} H_{V}^{-*}+H_{A}^{+} H_{A}^{-*}\right)}{\left|H_{V}^{+}\right|^{2}+\left|H_{V}^{-}\right|^{2}+\left|H_{A}^{+}\right|^{2}+\left|H_{A}^{-}\right|^{2}}$

Krueger,Matias 2005; Egede et al 2008
Becirevic, Schneider 2011
Matias, Mescia, Ramon, Virto 2012
Descotes-Genon et al 2012
$P_{5}^{\prime}=\frac{\operatorname{Re}\left[\left(H_{V}^{-}-H_{V}^{+}\right) H_{A}^{0 *}+\left(H_{A}^{-}-H_{A}^{+}\right.\right.}{\sqrt{\left(\left|H_{V}^{0}\right|^{2}+\left|H_{A}^{0}\right|^{2}\right)\left(\left|H_{V}^{+}\right|^{2}+\left|H_{V}^{-}\right|^{2}+|H|\right.}} \quad$ Two approximate null tests of the SM
What are the leading corrections?
where

$$
\begin{aligned}
C_{9, \perp} & =C_{9}^{\mathrm{eff}}\left(q^{2}\right)+\frac{2 m_{b} m_{B}}{q^{2}} C_{7}^{\mathrm{eff}} \\
C_{9, \|} & =C_{9}^{\mathrm{eff}}\left(q^{2}\right)+\frac{2 m_{b} E}{q^{2}} C_{7}^{\mathrm{eff}}
\end{aligned}
$$

C_{7} and C_{9} opposite sign
destructive interference enhances vulnerability to anything that violates the large-energy form factor relations (or more generally underestimated errors on form facors
much less of an issue in than to P_{1} or $\mathrm{P}_{3} \mathrm{CP}$ than eg in P_{5} (and others)

B->VII vector amplitudes

Only helicity +1 and -1 contribute to P_{1} and $\mathrm{P}_{3} \mathrm{CP}$

$$
H_{V}(\lambda) \propto \underbrace{\begin{array}{l}
\frac{2 m_{b} m_{B}}{q^{2}}\left(\tilde{T}_{\lambda}\left(q^{2}\right) C_{7}-\tilde{T}_{-\lambda}\left(q^{2}\right) C_{7}^{\prime}\right) \\
\text { photon pole at q} \\
\text { Only one form factor, drops out } \\
\text { up to interference }
\end{array}}_{\begin{array}{l}
\text { no photon pole: } \\
\begin{array}{l}
\text { vanishing relative } \\
\text { contribution as } q^{2}->0
\end{array} \\
\tilde{V}_{\lambda}\left(q^{2}\right) C_{9}-V_{-\lambda}\left(q^{2}\right) C_{9}^{\prime}
\end{array}}
$$

Helicity +1 power suppressed in the heavy-quark limit
$-\frac{16 \pi^{2} m_{B}^{2}}{q^{2}} h_{\lambda}\left(q^{2}\right)$
complicated
nonlocal correction
form factor T_{+}doubly suppressed (further $\mathrm{q}^{2} / \mathrm{m}_{\mathrm{B}}{ }^{2}$ factor) nonlocal term known to be singly suppressed $\left(\Lambda / \mathrm{m}_{\mathrm{b}}\right)$ could be the dominant uncertainty for null tests

Heavy-quark limit and corrections

(Charles et al) (Beneke, Feldmann)
q^{2} dependence in heavy-quark limit not known

- (model by a power p, and/or a pole model)

$$
\begin{aligned}
\mathrm{V}_{+}^{\infty}(0) & =0 \quad \mathrm{~T}_{+}^{\infty}(0)=0 \\
\mathrm{~V}_{-}^{\infty}(0)=\mathrm{T}_{-}^{\infty}(0) & \text { from heavy-quark/ } \\
\mathrm{V}_{0}^{\infty}(0)=\mathrm{T}_{0}^{\infty}(0) & \text { symmenetry } \\
T_{+}\left(q^{2}\right) & =\mathcal{O}\left(q^{2}\right) \times \mathcal{O}\left(\Lambda / m_{b}\right) \\
V_{+}\left(q^{2}\right) & =\mathcal{O}\left(\Lambda / m_{b}\right) .
\end{aligned}
$$

hence

Corrections are calculable in terms of perturbation theory, decay constants, light cone distribution amplitudes

$$
V_{+}^{\infty}\left(q^{2}\right)=0 \quad T_{+}^{\infty}\left(q^{2}\right)=0
$$

Burdman, Hiller 1999

- We see the suppression is particularly strong near low- q^{2} endpoint
- Form factor relations imply reduced uncertainties in suitable observables

Charm loop estimate

(a nonlocal, light-cone operator)
need estimate of $\langle M(k, \lambda)| \tilde{\mathcal{O}}_{\mu}|\bar{B}\rangle \quad$ (which goes into H^{\wedge})
light-cone SR based on Khodjamirian etal 2010 for K^{*} helicity amplitudes SJ, Martin Camalich 2012 outcome: helicity hierarchy remains for the endpoint region same conclusion for (anyway CKM-suppressed) light-quark LD effects at low q^{2} (estimated via VMD)

RH current probes

Extending to BSM Wilson coefficients, have

$$
\begin{array}{cl}
\begin{array}{c}
\text { neglecting strong phase differences } \\
\text { [tiny; take into account in numerics] }
\end{array} & \begin{array}{c}
\text { close to } \mathrm{q}^{2}=0 \text { (photon } \\
\text { pole dominance) }
\end{array} \\
P_{1} \equiv \frac{I_{3}+\bar{I}_{3}}{2\left(I_{2 s}+\bar{I}_{2 s}\right)} \stackrel{\downarrow}{\forall}=\frac{-2 \operatorname{Re}\left(H_{V}^{+} H_{V}^{-*}+H_{A}^{+} H_{A}^{-*}\right)}{\left|H_{V}^{+}\right|^{2}+\left|H_{V}^{-}\right|^{2}+\left|H_{A}^{+}\right|^{2}+\left|H_{A}^{-}\right|^{2}} & \approx 2 \frac{\operatorname{Re}\left(C_{7} C_{7}^{\prime *}\right)}{\left|C_{7}\right|^{2}+\left|C_{7}^{\prime}\right|^{2}} \\
P_{3}^{C P} \equiv-\frac{I_{9}-\bar{I}_{9}}{4\left(I_{2 s}+\bar{I}_{2 s}\right)}=-\frac{\operatorname{Im}\left(H_{V}^{+} H_{V}^{-*}+H_{A}^{+} H_{A}^{-*}\right)}{\left|H_{V}^{+}\right|^{2}+\left|H_{V}^{-}\right|^{2}+\left|H_{A}^{+}\right|^{2}+\left|H_{A}^{-}\right|^{2}} & \approx \frac{\operatorname{Im}\left(C_{7} C_{7}^{\prime *}\right)}{\left|C_{7}\right|^{2}+\left|C_{7}^{\prime}\right|^{2}}
\end{array}
$$

- double suppression $T_{+}\left(q^{2}\right)=\mathcal{O}\left(q^{2} / m_{B}^{2}\right) \times \mathcal{O}\left(\Lambda / m_{b}\right)$
- extra suppression of LD contribution to H^{+}(model by effective helicitydependent C_{7} (or C_{9}) shift, within range established by power counting)

Helicity hierarchy survives power corrections and is highly effective close to $q^{2}=0$

Predictions at very low q^{2}

$\operatorname{Bin}\left[\mathrm{GeV}^{2}\right]$	$B r\left[10^{-8}\right]$	P_{1}	P_{2}	$P_{3}^{C P}\left[10^{-4}\right]$
$[0.1,0.98]$	$9.5_{-3.5}^{+5.2}$	$0.024_{-0.055}^{+0.053}$	$-0.16_{-0.04}^{+0.05}$	$0.1_{-0.8}^{+0.7}$

| Electron | 26_{-9}^{+12} | $0.030_{-0.044}^{+0.047}-0.073_{-0.016}^{+0.020}$ | $0.1_{-0.6}^{+0.6}$ |
| :--- | :--- | :--- | :--- | :--- |

[0.0004,1.12+/-0.06]

- Very clean, very insensitive to form factor input
- Boost in BR: nearly 3x more electrons, most of the extra ones in the relevant q^{2} region $->$ partly offsets lower efficiency in LHCb

	Result	QCDF Fact. p.c.'s Non-fact. p.c.'s		
P_{1}	$0.030_{-0.044}^{+0.047}$		${ }_{-0.003}^{+0.008}$	± 0.012
$P_{3}^{C P}\left[10^{-4}\right]$	$0.1_{-0.6}^{+0.7}$	± 0.3	± 0.2	± 0.3

$$
\begin{aligned}
& A_{\mathrm{T}}^{(2)}=-0.23 \pm 0.23 \pm 0.05 \quad \text { LHCb, } 1501.03028, \text { JHEP } 1504 \text { (2015) } 064 \\
& A_{\mathrm{T}}^{\mathrm{Im}}=+0.14 \pm 0.22 \pm 0.05 \\
& A_{\mathrm{T}}^{\mathrm{Re}}=+0.10 \pm 0.18 \pm 0.05
\end{aligned}
$$

Predictions at very low q^{2}

$\operatorname{Bin}\left[\mathrm{GeV}^{2}\right]$	$B r\left[10^{-8}\right]$	P_{1}	P_{2}	$P_{3}^{C P}\left[10^{-4}\right]$
$[0.1,0.98]$	$9.5_{-3.5}^{+5.2}$	$0.024_{-0.055}^{+0.053}$	$-0.16_{-0.04}^{+0.05}$	$0.1_{-0.8}^{+0.7}$

| Electron | 26_{-9}^{+12} | $0.030_{-0.044}^{+0.047}-0.073_{-0.016}^{+0.020}$ | $0.1_{-0.6}^{+0.6}$ |
| :--- | :--- | :--- | :--- | :--- |

[0.0004,1.12+/-0.06]

- Very clean, very insensitive to form factor input
- Boost in BR: nearly 3x more electrons, most of the extra ones in the relevant q^{2} region $->$ partly offsets lower efficiency in LHCb

	Result	QCDF Fact. p.c.'s Non-fact. p.c.'s		
P_{1}	$0.030_{-0.044}^{+0.047}$		${ }_{-0.003}^{+0.008}$	± 0.012
$P_{3}^{C P}\left[10^{-4}\right]$	$0.1_{-0.6}^{+0.7}$	± 0.3	± 0.2	± 0.3

$$
\begin{array}{ll}
\text { Experiment (electrons) } & A_{\mathrm{T}}^{(2)}=-0.23 \pm 0.23 \pm 0.05 \quad \text { LHCb, } 1501.03028, \text { JHEP } 1504 \text { (2015) } 064 \\
& A_{\mathrm{T}}^{\mathrm{Im}}=+0.14 \pm 0.22 \pm 0.05 \\
& A_{\mathrm{T}}^{\mathrm{Re}}=+0.10 \pm 0.18 \pm 0.05
\end{array}
$$

Sensitivity to $\mathrm{Cl}_{7}^{\prime}($ muonic mode)

- Two angular observables remain clean null tests of the SM in the presence of long-distance corrections
- (theoretical limit on) sensitivity to $\mathrm{Re}_{7}{ }^{\prime}$ at $<10 \%\left(\mathrm{C}_{7}{ }^{\mathrm{SM}}\right)$ level, to $\mathrm{Im} \mathrm{C}_{7}$ ' at $<1 \%$
- sensitivity stems from $\mathrm{q}^{2}<2 \mathrm{GeV}^{2}$

Relation to $B->K^{*} \gamma$

$$
\begin{array}{rlr}
\mathcal{A}(\bar{B} \rightarrow V(\lambda) \gamma(\lambda)) & =\lim _{q^{2} \rightarrow 0} \frac{q^{2}}{e} H_{V}\left(q^{2}=0 ; \lambda\right) \quad \text { exact (LSZ) } \\
& =\frac{i N m_{B}^{2}}{e}\left[\frac{2 \hat{m}_{b}}{m_{B}}\left(C_{7} \tilde{T}_{\lambda}(0)-C_{7}^{\prime} \tilde{T}_{-\lambda}\right)(0)-16 \pi^{2} h_{\lambda}\left(q^{2}=0\right)\right]
\end{array}
$$

(only $\lambda=+/-1$)
same amplitudes as in B->KII incuding all long-distance details

$$
S_{K^{*} \gamma}=2 \frac{\operatorname{Im}\left(e^{-i \phi_{d}} H_{V}^{+}(0) H_{V}^{-*}(0)\right)}{\left|H_{V}^{+}(0)\right|^{2}+\left|H_{V}^{-}(0)\right|^{2}} \approx 2 \frac{\operatorname{Im}\left(e^{-i \phi_{d}} C_{7} C_{7}^{\prime *}\right)}{\left|C_{7}\right|^{2}+\left|C_{7}^{\prime}\right|^{2}}
$$

Status/prospects

SJ, Martin Camalich 1412.2183

$$
S \simeq \frac{2 \operatorname{Im}\left(e^{-2 i \beta} C_{7} C_{7}^{\prime}\right)}{\left|C_{7}\right|^{2}+\left|C_{7}^{\prime}\right|^{2}}
$$

$$
P_{1} \simeq \frac{2 \operatorname{Re}\left(C_{7} C_{7}^{\prime}\right)}{\left|C_{7}\right|^{2}+\left|C_{7}^{\prime}\right|^{2}}
$$

awaiting update with 2015 electron and muon data!

$$
P_{3}^{\mathrm{CP}} \simeq \frac{2 \operatorname{Im}\left(C_{7} C_{7}^{\prime}\right)}{\left|C_{7}\right|^{2}+\left|C_{7}^{\prime}\right|^{2}}
$$

- Left: assuming $\sigma_{P_{i}}=0.25$ for muons and electrons, no theory errors
- Right: Profile likelihood for 2014 data (1sigma and 95\% CL)
- excellent sensitivity to right-handed currents remains with conservative treatment of QCD uncertainties

A note on LUV tests

SM predicts lepton universality to great accuracy. In particular, apart from lepton mass effects all helicity amplitudes coincide and hence, to our accuracy, the theory error on any LUV ratio or difference is zero.

Altmannshofer, Straub; Hiller, Schmaltz;...; SJ, Martin Camalich 1412.3183

Lepton-flavour-dependence of position of zero-crossings

$$
\Delta_{0}^{i} \equiv\left(q_{0}^{2}\right)_{I_{i}}^{(\mu)}-\left(q_{0}^{2}\right)_{I_{i}}^{(e)}
$$

have negligible uncertainty (ie zero in SM within our approximations)
SJ, Martin Camalich 1412.3183
Complementary to ratios, as around the zeroes ratios will have large uncertainties (due to low statistics)

Probably not for LHCb alone due to energy resolution issues, but could be good opportunity for LHCb-Belle2 interplay.

Conclusions

Very low q^{2} provides excellent sensitivity to right-handed dipole transitions (Wilson coefficient C_{7}).

Reaching this conclusion involves combining heavy-quark expansions and LCSR methods to establish a double suppression of the "wronghelicity" amplitude in the SM

Electrons are very useful: factor 3 higher rate partially offsets lower acceptance in LHCb.
Good complementarity of LHCb electron and muon data

Possible LHCb-Belle2 interplay

BACKUP

Lignt-Ouək contrinutions

Operators without charm have strong charm or CKM suppression; power corrections should be negligible.

However, they generate (mild) resonance structure even below the charm threshold, presumably "duality violation"
Presumably ρ, ω, φ most important; use vector meson dominance supplemented by heavy-quark limit $\mathrm{B} \rightarrow \mathrm{VK}^{*}$ amplitudes

estimate uncertainty from difference between VMD model and the subset of heavy-quark limit diagrams corresponding to intermediate V states.

Helicity hierarchies in hadronic B decays prevent large uncertainties in $\mathrm{H}_{\mathrm{v}}{ }^{+}$from this source, too.

