$B \rightarrow X_{s} e e$ AND $B \rightarrow X_{s} \mu \mu:$ STATUS, PROSPECTS AND LEPTON NON-UNIVERSALITY

ENRICO LUNGHI
INDIANA UNIVERSITY

WHY $b \rightarrow s \ell^{+} \ell^{-}$

- Sensitive to many extensions of the SM

- Exclusive modes are experimentally easier (LHCb) but harder to bring under theoretical control (factorization, power corrections, ...)
- Inclusive modes require a super-B machine to be fully exploited but the theoretical outlook is very impressive
- Some references (inclusive): - Some references (exclusive):

Misiak; Buras, Munz, Bobeth, Urban, Asatryan, Asatrian, Greub, Walker, Ghinculov, Hurth, Isidori, Yao, Gambino, Gorbahn, Haisch, Huber, Lunghi, Wyler, Lee, Ligeti, Stewart, Tackmann, ...

Beneke, Feldmann, Seidel, Grinstein, Pirjol, Bobeth, Hiller, Dyk, Wacker, Piranishvili, Altmannshofer, Ball, Bharucha, Buras, Wick, Straub,
Matias, Lunghi, Virto, DescotesGenon, Hofer, Hurth, Mahmoudi, ...

WHY $b \rightarrow s \ell^{+} \ell^{-}$

SM operator basis:

$$
\mathcal{L}_{e f f}=\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t q}^{*}[\sum_{i=1}^{10} C_{i} Q_{i}+\frac{V_{u b} V_{u q}^{*}}{V_{t b} V_{t q}^{*}} \sum_{i=1}^{2} C_{i}\left(Q_{i}-Q_{i}^{u}\right)+\underbrace{\sum_{i=3}^{6} C_{i Q} Q_{i Q}+C_{b} Q_{b}}_{\text {for QED corrections }}]
$$

- Magnetic \& chromo-magnetic

$$
\begin{aligned}
& Q_{7}=\frac{e}{16 \pi^{2}} m_{b}\left(\bar{q}_{L} \sigma^{\mu \nu} b_{R}\right) F_{\mu \nu} \\
& Q_{8}=\frac{g}{16 \pi^{2}} m_{b}\left(\bar{q}_{L} \sigma^{\mu \nu} T^{a} b_{R}\right) G_{\mu \nu}^{a}
\end{aligned}
$$

Everything is known very well $\left(\mathrm{V}_{\mathrm{ub}} \mathrm{V}_{\mathrm{uq}}\right.$ contribution is small for $\mathrm{b} \rightarrow$ sll but important for $\mathrm{b} \rightarrow$ dll)

WHY $b \rightarrow s \ell^{+} \ell^{-}$

In NP extensions we get more structures ($\mathrm{V}+\mathrm{A}$, scalar, tensor)

- Right-handed (V+A):

$$
\begin{aligned}
Q_{7}^{\prime} & =\frac{e}{16 \pi^{2}} m_{b}\left[\bar{s}_{R} \sigma^{\mu \nu} b_{L}\right] F_{\mu \nu} \\
Q_{8}^{\prime} & =\frac{g}{16 \pi^{2}} m_{b}\left[\bar{s}_{R} \sigma^{\mu \nu} T^{a} b_{L}\right] G_{\mu \nu}^{a} \\
Q_{9}^{\prime} & =\left[\bar{s}_{R} \gamma_{\mu} b_{R}\right]\left[\bar{\ell} \gamma^{\mu} \ell\right] \\
Q_{10}^{\prime} & =\left[\bar{s}_{R} \gamma_{\mu} b_{R}\right]\left[\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right]
\end{aligned}
$$

- Scalar:

$$
\begin{aligned}
Q_{S} & =\left[\bar{s}_{L} b_{R}\right][\bar{\ell} \bar{\ell}] \\
Q_{S}^{\prime} & =\left[\bar{s}_{R} b_{L}\right][\bar{\ell} \bar{\ell}] \\
Q_{P} & =\left[\bar{s}_{L} b_{R}\right]\left[\bar{\ell} \gamma_{5} \bar{\ell}\right] \\
Q_{P}^{\prime} & =\left[\bar{s}_{R} b_{L}\right]\left[\bar{\ell} \gamma_{5} \bar{\ell}\right]
\end{aligned}
$$

- Tensor

$$
\begin{aligned}
Q_{T} & =\left[\bar{s} \sigma_{\mu \nu} b\right]\left[\bar{e} l l \sigma^{\mu \nu} \ell\right] \\
Q_{T 5} & =\frac{i}{2} \varepsilon^{\mu \nu \alpha \beta}\left[\bar{s} \sigma_{\mu \nu} b\right]\left[\bar{\ell} \sigma_{\alpha \beta} \ell\right]
\end{aligned}
$$

Q : is it possible to disentangle all these contributions?
A: With a little luck.

WHY $b \rightarrow s \ell^{+} \ell^{-}$

- Multi-objects in the final state (3 for $B \rightarrow K / X_{s}, 4$ for $B \rightarrow K^{*} \rightarrow K \pi$) allows to isolate contributions from various operators
- $B \rightarrow$ Kl

$$
\begin{aligned}
\frac{d^{2} \Gamma^{K}}{d q^{2} d \cos \theta_{\ell}}= & a+b \cos \theta_{\ell}+c \cos \theta_{\ell}^{2} \\
a \sim & C_{7}+C_{7}^{\prime}, C_{9}+C_{9}^{\prime}, C_{10}+C_{10}^{\prime} \\
& C_{S}+C_{S}^{\prime}, C_{P}+C_{P}^{\prime}, m_{\ell} C_{T} \\
b \sim & C_{S}+C_{S}^{\prime}, C_{P}+C_{P}^{\prime}, C_{T}, C_{T 5}, m_{\ell}\left(C_{10}+C_{10}^{\prime}\right) \\
c \sim & C_{7}+C_{7}^{\prime}, C_{9}+C_{9}^{\prime}, C_{10}+C_{10}^{\prime}, C_{T}, C_{T 5}
\end{aligned}
$$

- In the SM b is suppressed by the lepton mass: huge sensitivity to scalar, pseudoscalar, tensor operators (e.g. forward-backward asymmetry)
- We have three observables and those related by CP and isospin

WHY $b \rightarrow s \ell^{+} \ell^{-}$

- Multi-objects in the final state (3 for $B \rightarrow K / X_{s}, 4$ for $B \rightarrow K^{*} \rightarrow K \pi$) allows to isolate contributions from various operators
- $B \rightarrow X_{s} \ell$

$$
\left.\left.\begin{array}{rl}
\frac{d^{2} \Gamma^{X_{s}}}{d q^{2} d \cos \theta_{\ell}} & =\frac{3}{8}\left[\left(1+\cos ^{2} \theta_{\ell}\right) H_{T}+2\left(1-\cos ^{2} \theta_{\ell}\right) H_{L}+2 \cos \theta_{\ell} H_{A}\right] \\
H_{T} & \sim 2 \hat{s}(1-\hat{s})^{2}\left[\left|C_{9}+\frac{2}{\hat{s}} C_{7}\right|^{2}+\left|C_{10}\right|^{2}\right] \\
H_{L} & \sim(1-\hat{s})^{2}\left[\left|C_{9}+2 C_{7}\right|^{2}+\left|C_{10}\right|^{2}\right] \\
H_{A} & \sim-4 \hat{s}(1-\hat{s})^{2} \operatorname{Re}\left[q^{2} / m_{b}^{2}\right. \\
\hline
\end{array} C_{9}+2 \frac{m_{b}^{2}}{q^{2}} C_{7}\right)\right] \quad \text {. }
$$

- H_{A} is not suppressed by the lepton mass
- There are similar contributions from non-SM operators but there is no interference between $V+A$ and $V-A$ structures
- We have three observables and those related by CP and isospin

WHY $b \rightarrow s \ell^{+} \ell^{-}$

- Multi-objects in the final state (3 for $B \rightarrow K / X_{s}, 4$ for allows to isolate contributions from v
- $B \rightarrow K^{*} \ell \ell \rightarrow \pi \ell \ell$

$$
\begin{aligned}
& \frac{d^{4} \Gamma^{K^{*}}}{d q^{2} d \cos \theta_{l} d \cos \theta_{K^{*}} d \phi} \simeq \\
& J_{1}^{s} \sin ^{2} \theta_{K^{*}}+J_{1}^{c} \cos ^{2} \theta_{K^{*}}+\left(J_{2}^{s} \sin ^{2} \theta_{K^{*}}+J_{2}^{c} \cos ^{2} \theta_{K^{*}}\right) \cos 2 \theta_{l} \\
& \quad+J_{3} \sin ^{2} \theta_{K^{*}} \sin ^{2} \theta_{l} \cos 2 \phi+J_{4} \sin 2 \theta_{K^{*}} \sin 2 \theta_{l} \cos \phi+J_{5} \sin 2 \theta_{K^{*}} \sin \theta_{l} \cos \phi \\
& \quad+J_{6} \sin ^{2} \theta_{K^{*}} \cos \theta_{l}+J_{7} \sin 2 \theta_{K^{*}} \sin \theta_{l} \sin \phi \\
& \quad+J_{8} \sin 2 \theta_{K^{*}} \sin 2 \theta_{l} \sin \phi+J_{9} \sin ^{2} \theta_{K^{*}} \sin ^{2} \theta_{l} \sin 2 \phi,
\end{aligned}
$$

- We have 11 observables and those related by CP and isospin!
- The J_{a} observables are functions of all the Wilson coefficients (V+A and V-A operators do interfere)
- In the literature one finds various combinations of these J_{a}

WHAT TO EXPECT?

- Inclusive branching ratios have been measured at the $\mathbf{2 0 \%}$ level by Babar and Belle and there is discrete agreement
- Exclusive modes are accessible to LHCb and have been measured with greater accuracy
- In $P_{5}{ }^{\prime}$ (one of K^{*} observable) there is a 4σ discrepancy at low- q^{2}
- There is a 3σ discrepancy between $\mathrm{B} \rightarrow \mathrm{K} \mu \mu$ and $\mathrm{B} \rightarrow$ Kee
- The elephant in the room: size of power corrections, their \mathbf{q}^{2} dependence and breakdown of the theoretical approach (e.g. resonant charm effects)
- What is the ultimate theoretical precision on K, K^{*} and Xs quantities?

THEORY: EXCLUSIVE

- The central problem is the calculation of matrix elements:

$$
\left\langle K^{(*)} \ell \ell\right| O(y)|B\rangle \approx\left\langle K^{(*)}\right| T J_{\mu}^{\mathrm{em}}(x) O(y)|B\rangle
$$

if O contains a leptonic current (i.e. $\mathrm{O}_{7,9,10}$) the matrix elements reduces to a form factor (lattice, QCD sum rules)

- At high- q^{2} the $\mathrm{K}^{(*)}$ doesn't recoil:

Grinstein \& Pirjol showed how to write a simple OPE in which all matrix elements are given in terms of calculable hard coefficients and form factors (up to power corrections)

THEORY: EXCLUSIVE

- The central problem is the calculation of matrix elements:

$$
\left\langle K^{(*)} \ell \ell\right| O(y)|B\rangle \approx\left\langle K^{(*)}\right| T J_{\mu}^{\mathrm{em}}(x) O(y)|B\rangle
$$

if O contains a leptonic current (i.e. $\mathrm{O}_{7,9,10}$) the matrix elements reduces to a form factor (lattice, QCD sum rules)

- At low- q^{2} the $K^{(*)}$ recoils strongly:

- The large energy of the $\mathrm{K}^{(*)}$ introduces three scales: $\mathrm{m}_{\mathrm{b}}{ }^{2}, \Lambda \mathrm{~m}_{\mathrm{b}}$ and Λ^{2} :

$$
\left\langle K^{(*)}\right| T J_{\mu}^{\mathrm{em}}(x) O(y)|B\rangle \sim \begin{array}{cc}
C \times\left[\text { Form Factor }+\phi_{B} \star J \star \phi_{K}\right]+O\left(\frac{\Lambda}{m_{b}}\right) \\
\mathrm{m}_{\mathrm{b}}{ }^{2} \quad \Lambda^{2} \quad \Lambda^{2} \Lambda \mathrm{~m}_{\mathrm{b}} \Lambda^{2}
\end{array}
$$

THEORY: EXCLUSIVE

- Soft Collinear Effective Theory

- us-hc factorization is rock solid (inclusive modes, collider physics)
- us-c factorization is more problematic (exclusive modes) because both collinear and ultrasoft modes have $\mathrm{p}^{2} \sim \Lambda^{2}$ and sometimes they don't factorize (zero-bin, messenger modes ...)

POWER CORRECTIONS

$$
\begin{aligned}
p_{X_{s}}^{2} & =\left(p_{b}-q\right)^{2}=m_{b}^{2}+q^{2}-2 m_{b} q_{0} \\
& <m_{b}^{2}+q^{2}-2 m_{b} \sqrt{q^{2}}=\left(m_{b}-\sqrt{q^{2}}\right)^{2}
\end{aligned}
$$

OPE is an expansion in $\Lambda_{Q C D} /\left(m_{b}-\sqrt{q^{2}}\right)$ and breaks down at $q^{2} \sim m_{b}^{2}$

THEORY: INCLUSIVE

$$
\Gamma\left[\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}\right]=\Gamma\left[\bar{b} \rightarrow X_{s} \ell^{+} \ell^{-}\right]+O\left(\frac{\Lambda_{Q C D}^{2}}{m_{b}^{2}}, \frac{\Lambda_{Q C D}^{3}}{m_{b}^{3}}, \frac{\Lambda_{Q C D}^{2}}{m_{c}^{2}}, \ldots\right)
$$

local OPE, optical theorem quark-hadron duality

Phase space cuts introduce sensitivity to new scales, the rate becomes less inclusive and new non-perturbative effects appear

$M_{X_{s}}<[1.8,2] \mathrm{GeV}$ cut to remove double semileptonic decay background
Q High-q ${ }^{2}$ region unaffected
9 Experiments correct using Fermi motion model

- SCET ${ }^{\text {I }}$ suggests cuts are universal (same for $b \rightarrow s$ sll and $b \rightarrow u l v$)
Effect of cc resonances can be included using data from ee \rightarrow hadrons

THEORY: INCLUSIVE

$$
\Gamma\left[\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}\right]=\Gamma\left[\bar{b} \rightarrow X_{s} \ell^{+} \ell^{-}\right]+O\left(\frac{\Lambda_{Q C D}^{2}}{m_{b}^{2}}, \frac{\Lambda_{Q C D}^{3}}{m_{b}^{3}}, \frac{\Lambda_{Q C D}^{2}}{m_{c}^{2}}, \ldots\right)
$$

local OPE, optical theorem quark-hadron duality

- Low-q²: theory in excellent shape
- High-q²: the OPE starts to break down and only integrated quantities are reliable
- mismatch between partonic and hadronic phase space
- power corrections are larger
- higher charmonium resonances must be integrated over
- things improve dramatically by normalizing the rate to the semileptonic rate with the same q^{2} cut [Ligeti et al.]

$$
\mathcal{R}\left(s_{0}\right)=\int_{s_{0}}^{1} \mathrm{~d} \hat{s} \frac{\mathrm{~d} \Gamma\left(\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}\right)}{\mathrm{d} \hat{s}} / \int_{s_{0}}^{1} \mathrm{~d} \hat{s} \frac{\mathrm{~d} \Gamma\left(\bar{B}^{0} \rightarrow X_{u} \ell \nu\right)}{\mathrm{d} \hat{s}}
$$

CHARMONIUM TROUBLES

- Quark-hadron duality breaks down when the rate is dominated by charmonium resonances:

- Three regions:
- $0.04 \mathrm{GeV}^{2}<\mathrm{q}^{2}<1 \mathrm{GeV}^{2}$
$1 \mathrm{GeV}^{2}<q^{2}<6 \mathrm{GeV}^{2}$
$q^{2}>14.4 \mathrm{GeV}^{2}$
dominated by the photon pole ($b \rightarrow s \gamma$)
- Resonances model using data:
* Krüger-Sehgal (e+e- data)
* Breit-Wigner ansatz

Q^{2} CUTS

- Kruger-Sehgal mechanism:

$$
\begin{aligned}
R_{\mathrm{had}}^{c \bar{c}} & =\frac{\sigma\left(e^{+} e^{-} \rightarrow \mathrm{c} \overline{\mathrm{c}} \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)} \\
& ={ }_{e^{+}}^{e^{-}}
\end{aligned}
$$

$$
\operatorname{Im}\left\langle O_{2}\right\rangle \rightarrow\left\langle O_{9}\right\rangle_{\text {tree }}\left(\frac{\pi}{3} R_{\text {had }}^{c \bar{c}}(\hat{s})\right)
$$

$$
\operatorname{Re}\left\langle O_{2}\right\rangle \rightarrow\left\langle O_{9}\right\rangle_{\text {tree }}\left(-\frac{8}{9} \log m_{c} / m_{b}-\frac{4}{9}+\frac{\hat{s}}{3} P \int_{4 \hat{m}_{D}^{2}}^{\infty} \frac{R_{\mathrm{had}}^{c \bar{c}}\left(\hat{s}^{\prime}\right)}{\hat{s}^{\prime}\left(\hat{s}^{\prime}-\hat{s}\right)} d \hat{s}^{\prime}\right)
$$

- Alternatively use a Breit-Wigner ansatz to parametrize $\left.<\mathrm{O}_{2}\right\rangle$

$$
Y_{\mathrm{amm}}(\hat{s})=Y_{\mathrm{pert}}(\hat{s})+\frac{3 \pi}{\alpha^{2}} C^{(0)} \sum_{V_{i}=\psi(1 s), \ldots, \psi(6 s)} \kappa_{i} \frac{\Gamma\left(V_{i} \rightarrow \ell^{+} \ell^{-}\right) m_{V_{i}}}{m_{V_{i}}^{2}-\hat{s} m_{B}^{2}-i m_{V_{i}} \Gamma_{V_{i}}}
$$

- The two approaches agree well above and below the resonances but not in between: interference between resonances is tricky
- The impact in the low q^{2} region is $+1.8 \%$, in the high q^{2} region is -10%

QED LOGS: OVERVIEW

- The rate is proportional to $\alpha_{\mathrm{em}}^{2}\left(\mu^{2}\right)$. Without QED corrections the scale μ is undetermined $\rightarrow \pm 4 \%$ uncertainty
- Focus on corrections enhanced by large logarithms:
- $\quad \alpha_{\mathrm{em}} \log \left(m_{W} / m_{b}\right) \sim \alpha_{\mathrm{em}} / \alpha_{s}$
- $\quad \alpha_{\mathrm{em}} \log \left(m_{\ell} / m_{b}\right)$
[WC, RG running] [Bobeth,Gambino,Gorbahn,Haisch] [Matrix Elements]
- The differential rate is not IR safe with respect to photon emission the results in the presence of a physical collinear logarithm, $\log \left(m_{\ell} / m_{b}\right)$

CED LOGS: THERY VS EXPERIMENT

- Theory
include all bremsstrahlung photons into the X_{s} system:

- Experiment (fully inclusive, Super-B only) One B is identified; on the other side only the two leptons are reconstructed:

- Experiment (Xs system reconstructed as a sum over exclusive states): At BaBar (Belle) photons with energies smaller than 30 (20) MeV are not resolved. Photons emitted inside a small cone ($35 \times 50 \mathrm{mrad}$) around the electrons are identified and included in the event reconstruction. Events with any other photon ($\mathrm{E}>30(20) \mathrm{MeV}$ and outside of the cone) are vetoed.

Note: at BaBar (Belle) photons inside the cone are (are not) included in the definition of the q^{2}

- Measured rates are sensitive to the soft photon cutoff and to the size of the cone

QED LOGS: SIZE OF THE EFFECT

- We calculated the effect of collinear photon radiation and found large effects on some observables

Shift on H_{T} is $\sim 70 \%$!
H_{T} is smaller than $\mathrm{H}_{\mathrm{L}}(\hat{s} \lesssim 0.3)$:
$H_{T} \sim 2 \hat{s}(1-\hat{s})^{2}\left[\left|C_{9}+\frac{2}{\hat{s}} C_{7}\right|^{2}+\left|C_{10}\right|^{2}\right]$ $H_{L} \sim(1-\hat{s})^{2}\left[\left|C_{9}+2 C_{7}\right|^{2}+\left|C_{10}\right|^{2}\right]$

	$q^{2} \in[1,6] \mathrm{GeV}^{2}$			$q^{2} \in[1,3.5] \mathrm{GeV}^{2}$			$q^{2} \in[3.5,6] \mathrm{GeV}^{2}$		
	$\frac{O_{[1,6]}}{\mathcal{B}_{[1,6]}}$	$\frac{\Delta O_{[1,6]}}{\mathcal{B}_{[1,6]}}$	$\frac{\Delta O_{[1,6]}}{O_{[1,6]}}$	$\frac{O_{[1,3.5]}}{\mathcal{B}_{(1,6]}}$	$\frac{\Delta O_{[1,3,5]} \mathcal{B}_{(1,6]}}{}$	$\frac{\Delta O_{[1,3,5]}}{O_{[1,3,5]}}$	$\frac{o_{[3.5,6]}}{\mathcal{B}_{[1,6]}}$	$\frac{\Delta O_{[3,5,6]}}{\mathcal{B}_{[1,6]}}$	$\frac{\Delta O_{[3.5,6]}}{O_{[3,5]}}$
\mathcal{B}	100	5.1	5.1	54.6	3.7	6.8	45.4	1.4	3.1
\mathcal{H}_{T}	19.5	14.1	72.5	9.5	8.8	92.1	10.0	5.4	53.6
\mathcal{H}_{L}	80.0	-8.7	-10.9	44.7	-4.7	-10.6	35.3	-4.0	-11.3
\mathcal{H}_{A}	-3.3	1.4	-43.6	-7.2	0.8	-10.7	4.0	0.6	16.2

QED LOGS: SIZE OF THE EFFECT

- We calculated the effect of collinear photon radiation and found large effects on some observables

Size of QED contributions to the H_{T} and H_{L} is similar

	$q^{2} \in[1,6] \mathrm{GeV}^{2}$			$q^{2} \in[1,3.5] \mathrm{GeV}^{2}$			$q^{2} \in[3.5,6] \mathrm{GeV}^{2}$		
	$\frac{O_{[1,6]}}{\mathcal{B}_{[1,6]}}$	$\frac{\Delta O_{[1,6}}{\mathcal{B}_{11,6]}}$	$\frac{\Delta O_{[1,6]}}{O_{[1,6]}}$	$\frac{O_{[1,3.5]}}{\mathcal{B}_{[1,6]}}$	$\frac{\Delta O_{[1,3,5]}}{\mathcal{B}_{11,6]}}$	$\frac{\Delta O_{[1,3.5]}}{O_{[1,3.5]}}$	$\frac{O_{[3,5,6]}}{\mathcal{B}_{[1,6]}}$	$\frac{\Delta O_{13}}{\mathcal{B}_{11}}$	$\frac{\Delta O_{[3,5,6]}}{O_{[3,5]}}$
\mathcal{B}	100	5.1	5.1	54.6	3.7	6.8	45.4	1.4	3.1
\mathcal{H}_{T}	19.5	14.1	72.5	9.5	8.8	92.1	10.0	5.4	53.6
\mathcal{H}_{L}	80.0	-8.7	-10.9	44.7	-4.7	-10.6	35.3	-4.0	-11.3
\mathcal{H}_{A}	-3.3	1.4	-43.6	-7.2	0.8	-10.7	4.0	0.6	16.2

QED LOGS: MONTE CARLO

- EM effects have been calculated analytically and cross checked against Monte Carlo generated events (EVTGEN + PHOTOS)

QED LOGS: MONTE CARLO

- The Monte Carlo study reproduces the main features of the analytical results

Monte Carlo:			
	$q^{2} \in[1,6]$		
	$\frac{O_{11,6]}}{\mathcal{B}_{11,6]}}$	$\frac{\Delta O_{[1,6]}}{\mathcal{B}_{[1,6]}}$	$\frac{\Delta O_{[1,6]}}{O_{[1,6]}}$
\mathcal{B}	100	3.5	3.5
\mathcal{H}_{T}	19.0	8.0	43.0
\mathcal{H}_{L}	81.0	-4.5	-5.5

Analytical:

	$q^{2} \in[1,6] \mathrm{GeV}^{2}$		
	$\frac{O_{[1,6]}}{\mathcal{B}_{[1,6]}}$	$\frac{\Delta O_{[1,6]}}{\mathcal{B}_{[1,6]}}$	$\frac{\Delta O_{[1,6]}}{O_{[1,6]}}$
\mathcal{B}	100	5.1	5.1
\mathcal{H}_{T}	19.5	14.1	72.5
\mathcal{H}_{L}	80.0	-8.7	-10.9

QED LOGS: MONTE CARLO

- The Monte Carlo study reproduces the main features of the analytical results

DEFINITION OF OBSERVABLES

- At leading order in QED and at all orders in QCD, the double differential width is a quadratic polynomial: $\Gamma \sim a \cos ^{2} \theta+b \cos \theta+c$.
- Γ receives non polynomial log-enhanced QED corrections
- Best strategy: measure individual observables (BR, A_{FB}) and use Legendre polynomial as projectors

$$
H_{I}\left(q^{2}\right)=\int_{-1}^{+1} \frac{d^{2} \Gamma}{d q^{2} d z} W_{I}(z) d z
$$

$$
\begin{array}{lr}
W_{T}=\frac{2}{3} P_{0}(z)+\frac{10}{3} P_{2}(z), & W_{3}=P_{3}(z) \\
W_{L}=\frac{1}{3} P_{0}(z)-\frac{10}{3} P_{2}(z), & W_{4}=P_{4}(z) \\
W_{A}=\frac{4}{3} \operatorname{sign}(z) . &
\end{array}
$$

$$
\begin{aligned}
\frac{d \Gamma}{d q^{2}} & =\int_{-1}^{+1} \frac{d^{2} \Gamma}{d q^{2} d z} d z=H_{T}+H_{L} \\
\frac{d A_{\mathrm{FB}}}{d q^{2}} & =\int_{-1}^{+1} \frac{d^{2} \Gamma}{d q^{2} d z} \operatorname{sign}(z) d z=\frac{3}{4} H_{A} \\
\frac{d \bar{A}_{\mathrm{FB}}}{d q^{2}} & =\frac{\int_{-1}^{+1} \frac{d^{2} \Gamma}{d q^{2} d z} \operatorname{sign} d z}{\int_{-1}^{+1} \frac{d^{2} \Gamma}{d q^{2} d z} d z}=\frac{3}{4} \frac{H_{A}}{H_{T}+H_{L}}
\end{aligned}
$$

INCLUSIVE: PRESENT STATUS

$$
\begin{aligned}
& \delta_{\text {th }} \\
& \pm 7 \% \\
& \mathcal{H}_{T}[1,6]_{e e}=(5.34 \pm 0.38) \cdot 10^{-7} \\
& \pm 6 \% \\
& \mathcal{H}_{L}[1,6]_{e e}=(1.13 \pm 0.06) \cdot 10^{-6} \\
& \mathcal{H}_{A}[1,3.5]_{e e}=(-1.03 \pm 0.05) \cdot 10^{-7} \\
& \mathcal{H}_{A}[3.5,6]_{e e}=(+0.73 \pm 0.12) \cdot 10^{-7} \\
& \mathcal{H}_{3}[1,6]_{e e}=(8.92 \pm 1.20) \cdot 10^{-9} \\
& \mathcal{H}_{4}[1,6]_{e e}=(8.41 \pm 0.78) \cdot 10^{-9} \\
& \mathcal{B}[1,6]_{e e}=(1.67 \pm 0.10) \cdot 10^{-7} \\
& \mathcal{B}[>14.4]_{e e}=(2.20 \pm 0.70) \cdot 10^{-7} \\
& \text { R(} \mu / \mathrm{e} \text {) } \\
& 0.75 \\
& 1.07 \\
& 1.07 \\
& 0.92 \\
& 0.42 \\
& 0.42 \\
& 0.97 \\
& 1.15
\end{aligned}
$$

- Scale uncertainties dominate at low-q²
- Power corrections and scale uncertainties dominate at high-q²
- Log-enhanced QED corrections at low and high q^{2} are correlated

INCLUSIVE Rx

- Actual results for the μ / e ratios:

$$
\begin{aligned}
\mathcal{R}_{T}[1,3.5] & =(0.72 \pm 0.01) & \mathcal{R}_{\mathrm{BR}}[1,3.5] & =(0.959 \pm 0.004) \\
\mathcal{R}_{T}[3.5,6] & =(0.80 \pm 0.01) & \mathcal{R}_{\mathrm{BR}}[3.5,6] & =(0.983 \pm 0.002) \\
\mathcal{R}_{T}[1,6] & =(0.75 \pm 0.01) & \mathcal{R}_{\mathrm{BR}}[1,6] & =(0.970 \pm 0.003) \\
\mathcal{R}_{L}[1,3.5] & =(1.069 \pm 0.006) & \mathcal{R}_{A}[1,3.5] & =(1.07 \pm 0.006) \\
\mathcal{R}_{L}[3.5,6] & =(1.074 \pm 0.006) & \mathcal{R}_{A}[3.5,6] & =(0.92 \pm 0.02) \\
\mathcal{R}_{L}[1,6] & =(1.072 \pm 0.006) & \mathcal{R}_{A}[1,6] & =(1.45 \pm 0.34) \\
\mathcal{R}_{3} & =0.42 & & \\
\mathcal{R}_{4} & =0.42 & &
\end{aligned}
$$

$$
20=9
$$

HIGH-Q2: REDUCING THE ERRORS

- Normalize the decay width to the semileptonic $B \rightarrow X_{u} l v$ rate with the same dilepton invariant mass cut:

$$
\mathcal{R}\left(s_{0}\right)=\frac{\int_{\hat{s}_{0}}^{1} \mathrm{~d} \hat{s} \frac{\mathrm{~d} \Gamma\left(\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}\right)}{\mathrm{d} \hat{s}}}{\int_{\hat{s}_{0}}^{1} \mathrm{~d} \hat{s} \frac{\mathrm{~d} \Gamma\left(\bar{B}^{0} \rightarrow X_{u} \ell \nu\right)}{\mathrm{d} \hat{s}}}
$$

- Impact of $1 / m_{b}^{2}$ and $1 / m_{b}^{3}$ power corrections drastically reduced:

$$
\begin{aligned}
\mathcal{R}(14.4)_{\mu \mu}= & \left(2.62 \pm 0.09_{\text {scale }} \pm 0.03_{m_{t}} \pm 0.01_{C, m_{c}} \pm 0.01_{m_{b}} \pm 0.01_{\alpha_{s}} \pm 0.23_{\mathrm{CKM}}\right. \\
& \left. \pm 0.0002_{\lambda_{2}} \pm 0.09_{\rho_{1}} \pm 0.04_{f_{u}^{0}+f_{s}} \pm 0.12_{f_{u}^{0}-f_{s}}\right) \cdot 10^{-3} \\
= & (2.62 \pm 0.30) \cdot 10^{-3} \\
\mathcal{R}(14.4)_{e e}= & \left(2.25 \pm 0.12_{\text {scale }} \pm 0.03_{m_{t}} \pm 0.02_{C, m_{c}} \pm 0.01_{m_{b}} \pm 0.01_{\alpha_{s}} \pm 0.20_{\mathrm{CKM}}\right. \\
& \left. \pm 0.02_{\lambda_{2}} \pm 0.14_{\rho_{1}} \pm 0.08_{f_{u}^{0}+f_{s}} \pm 0.12_{f_{u}^{0}-f_{s}}\right) \cdot 10^{-3} \\
= & (2.25 \pm 0.31) \cdot 10^{-3}
\end{aligned}
$$

- The largest source of uncertainty is $V_{u b}$

present status

BaBar: $471 \times 10^{6} \mathrm{BB}$ pairs ($424 \mathrm{fb}^{-1}$) Belle: 152×10^{6} BB pairs ($140 \mathrm{fb}^{-1}$)

- World averages (Babar, Belle):

$$
\begin{aligned}
\mathrm{BR}^{\exp } & =(1.58 \pm 0.37) \times 10^{-6}
\end{aligned} q^{2} \in[1,6] ~ 子 \begin{aligned}
& \mathrm{BR}^{\exp }=(0.48 \pm 0.10) \times 10^{-6} \\
& \bar{A}^{2}>14.4 \\
& \overline{\mathrm{FB}}^{\exp }= \begin{cases}0.34 \pm 0.24 & q^{2} \in[0.2,4.3] \\
0.04 \pm 0.31 & q^{2} \in[4.3,7.3(8.1)]\end{cases}
\end{aligned}
$$

```
\delta exp }\approx23
\delta exp }\approx21
non-optimal binning
```

- Theory:

$$
\begin{aligned}
\mathrm{BR}^{\mathrm{th}} & =(1.65 \pm 0.10) \times 10^{-6} \\
\mathrm{BR}^{\mathrm{th}} & =(0.237 \pm 0.070) \times 10^{-6} \\
\bar{A}_{\mathrm{FB}}^{\mathrm{th}} & = \begin{cases}-0.077 \pm 0.006 & q^{2}>14.4 \\
0.05 \pm 0.02 & q^{2} \in[0.2,4.3]\end{cases}
\end{aligned}
$$

$$
\delta_{\mathrm{th}} \approx 6 \%
$$

$$
\delta_{\mathrm{th}} \approx 30 \%
$$

non-optimal binning

- $\mathrm{BR}=H_{T}+H_{L} \quad \bar{A}_{\mathrm{FB}}=\frac{3}{4} \frac{H_{A}}{H_{T}+H_{L}}$

present status

- Constraints in the $\left[\mathrm{R}_{9}, \mathrm{R}_{10}\right]$ plane $\left(R_{i}=C_{i}\left(\mu_{0}\right) / C_{i}^{\mathrm{SM}}\left(\mu_{0}\right)\right)$:

- Note that $C_{9}^{\mathrm{SM}}\left(\mu_{0}\right)=1.61$ and $C_{10}^{\mathrm{SM}}\left(\mu_{0}\right)=-4.26$
- Best fits from the exclusive anomaly translate in $\mathrm{R}_{9} \sim 0.3$ (for the single WC fit) or $\mathrm{R}_{9} \sim 0.65$ and $\mathrm{R}_{10} \sim 0.9$ (for the $C_{9}^{\mathrm{NP}}=-C_{10}^{\mathrm{NP}} 5$ cenario)

PROJECTIONS

- Projected reach with $50 \mathrm{ab}^{-1}$ of integrated luminosity

$$
\begin{gathered}
\mathcal{O}_{\exp }=\int \frac{d^{2} \mathcal{N}}{d \hat{s} d z} W[\hat{s}, z] d \hat{s} d z \\
\delta \mathcal{O}_{\exp }=\left[\int \frac{d^{2} \mathcal{N}}{d \hat{s} d z} W[\hat{s}, z]^{2} d \hat{s} d z\right]^{\frac{1}{2}}
\end{gathered}
$$

	$[1,3.5]$	$[3.5,6]$	$[1,6]$	>14.4
\mathcal{B}	3.7%	4.0%	3.0%	4.1%
\mathcal{H}_{T}	24%	21%	16%	-
\mathcal{H}_{L}	5.8%	6.8%	4.6%	-
\mathcal{H}_{A}	37%	44%	200%	-
\mathcal{H}_{3}	240%	180%	150%	-
\mathcal{H}_{4}	140%	360%	140%	-

PROJECTIONS

CONCLUSIONS

Q Inclusive calculations are almost at the "end-of-the-road", are clean but require Belle II

Q Inclusive modes are sensitive to the treatment of QED radiation. The effect can be very large (depending on the observable) and can be exploited to test further combinations of Wilson coefficients

- Exclusive modes have a rich phenomenology but are plagued by form factor uncertainties (progress from lattice QCD expected), parametric uncertainties (light-cone wave functions, ...) and power corrections
- LHCb data are in general agreement with the SM predictions with the exception of an angular distribution ($\mathrm{P}_{5}{ }^{\prime}$), the BR at high $-\mathrm{q}^{2}$ and a lepton flavor universality breaking ratio $\left(\mathrm{R}_{\mathrm{K}}\right)$

BACKUP SLIDES

INPUTS FOR B \rightarrow SLL

$$
\begin{aligned}
& \alpha_{s}\left(M_{z}\right)=0.1184 \pm 0.0007 \\
& \alpha_{e}\left(M_{z}\right)=1 / 127.918 \\
& s_{W}^{2} \equiv \sin ^{2} \theta_{W}=0.2312 \\
& \left|V_{t s}^{*} V_{t b} / V_{c b}\right|^{2}=0.9621 \pm 0.0027[85] \\
& \left|V_{t s}^{*} V_{t b} / V_{u b}\right|^{2}=130.5 \pm 11.6[85] \\
& B R\left(B \rightarrow X_{c} e \bar{\nu}\right)_{\exp }=0.1051 \pm 0.0013[86] \\
& M_{Z}=91.1876 \mathrm{GeV} \\
& M_{W}=80.385 \mathrm{GeV} \\
& \mu_{b}=5_{-2.5}^{+5} \mathrm{GeV} \\
& \lambda_{2}^{\mathrm{eff}}=(0.12 \pm 0.02) \mathrm{GeV}^{2} \\
& \lambda_{1}^{\mathrm{eff}}=(-0.362 \pm 0.067) \mathrm{GeV}^{2}[86,87] \\
& f_{u}^{0}-f_{s}=(0 \pm 0.04) \mathrm{GeV}^{3}[52]
\end{aligned}
$$

INCL-EXCL INTERPLAY

- The effects on C9 and C9' are large enough to be easily checked at Belle II with inclusive decays (free of most uncertainties that plague the exclusive modes)

(
[Hurth, Mahmoudi 1411.2786]

