B->VII QCD Aspects

Roman Zwicky Edinburgh University

11-13 May b->sll in 2015 (Workshop-Edinburgh)

structure

- I. motivation
- II. short and long distance overview
 II.a long distance
 II.b short distance form factors
 II.c a note vector mesons (decay constants et al)

III summary

Of current importance ... anomalies B->K*II et al

driven by zero of helicity amplitudes

$$\begin{split} I_{\perp}^{L,R} &= \left[(\mathcal{C}_{9} + \mathcal{C}_{9'}) \mp (\mathcal{C}_{10} + \mathcal{C}_{10'}) \right] \frac{V}{M_{B} + M_{K^{*}}} + \frac{2m_{b}}{q^{2}} \left(\mathcal{C}_{7} + \mathcal{C}_{7'} \right) T_{1} \\ &+ \text{long} - \text{distance} \end{split}$$

closer look

a) pronounced towards J/Ψ

b) photon penguin only — C_{10} (no long-distance) not necessary

c) high q² charm very pronounced (tomorrow)

altogether suggests (at least a large part) in P₅' et al is due to charm

closer look

a) pronounced towards J/Ψ

b) photon penguin only $-C_{10}$ (no long-distance) not necessary

c) high q² charm very pronounced (tomorrow)

altogether suggests (at least a large part) in P₅' et al is due to charm

Moriond 2015 data

Straub's talk Moriond'15

- effect same sign as in naive fac. in "-" versus "0" helicity
- <u>my comment</u>: that's what
 B→ J/Ψ K* experimental
 angular analysis predicts
 for J/Ψ,Ψ(2S)-contributions

 then R_κ-anomaly (2.6σ) came along and there charm should play no role and this points towards true short-distance new physics

$$\mathsf{R}_{\mathsf{K}} = \mathfrak{B}(\mathsf{B}^+ \rightarrow \mathsf{K}^+ \mu^+ \mu^-) / \mathfrak{B}(\mathsf{B}^+ \rightarrow \mathsf{K}^+ \mathsf{e}^+ \mathsf{e}^-)$$

 what are the size of QED corrections? QED corrections expected smaller than central-value effect (some talks tomorrow) • then R_{κ} -anomaly (2.6 σ) came along and there **charm** should play **no role** and this points towards true short-distance new physics

$$\mathsf{R}_{\mathsf{K}} = \mathfrak{B}(\mathsf{B}^{+} \rightarrow \mathsf{K}^{+} \mu^{+} \mu^{-}) / \mathfrak{B}(\mathsf{B}^{+} \rightarrow \mathsf{K}^{+} \mathsf{e}^{+} \mathsf{e}^{-})$$

 what are the size of QED corrections? QED corrections expected smaller than central-value effect (some talks tomorrow)

• $B_s \rightarrow \phi$ vs $B \rightarrow K^*$ tension in branching fraction (later)

tensions (anomalies): call for closer look of QCD evaluation

topic of this talk: what are these

- short-distance (SD) contributions form factor
- long-distance (LD) contributions

topologies

В

quark-loop

SD-penguin

right-handed currents

weak annihilation CKM-enhanced b→d

non-perturbative fcts of q²

non-perturbative fcts of q²

 Old principle of **analyticity**, unitarity etc: any amplitude determined by its singularities e.g. poles (intermediate single particles) branch cuts (intermediate multi-particles)

- two large momenta
 - $p_B^2 = m_B^2$ fixed
 - $4m_1^2 < q^2 < (m_B m_{K^*})^2$ trace them

short vs long distance

SD = form factor local int.

shape q² dictated by m_{B*}-pole (outside physical region)

short vs long distance

SD = form factor local int.

shape q² dictated by m_{B*}-pole (outside physical region)

cut $p_B^2 = m_B^2$ fixed — interpretation:

Multihadron state $(\bar{s}q)_{0\pm}$ q-number

result: strong phases status: believed to be without problem many states (broad) s.t. partonic QCD is trustworthy

radiation from light-quark

taken care of by photon DA characteristic 1/q² fall-off

radiation from light-quark

taken care of by photon DA characteristic 1/q² fall-off

radiation from charm quark

required closer look and theory and experiment working together (tomorrow)

long-distance brief overview status

	QCDF	LCSR
comments:	 depends B-meson DA at 1/m endpoint divergences 	 depend on spurious momentum and analytic continuation thereof includes photon DA
	1/m accidental?	photon DA sizeable Khodjamirian et al'95 Ali Braun'95 Lyon, RZ'13
	the 1/m divergent	Dimou, Lyon, RZ'12
	idem	not done (some work)
<i>q</i> <i>b</i> <i>b</i> <i>c</i> <i>c</i> <i>c</i> <i>c</i> <i>c</i> <i>c</i> <i>c</i> <i>c</i> <i>c</i> <i>c</i>	non-factorisable	various bits done Ball, Jones, RZ'06, Khodjamirian et al'10,later
-	Bosch, Buchalla'01 Beneke, Feldman, Seidel'01	

generally: to disentangle short from long-distance effects need fine q²-binning

 general: low-q² meson fast light-cone methods LCSR high-q² meson slow lattice (effective theory b)

 general: low-q² meson fast light-cone methods LCSR high-q² meson slow lattice (effective theory b)

pseudo scalar B->K,π 3 (main) form factors

lattice: unquenched (staggered)
 Bouchard et al'13
 LCSR: twist-3 O(a_s)

Ball RZ'04, Khodjamirian et al'08,10?

 general: low-q² meson fast light-cone methods LCSR high-q² meson slow lattice (effective theory b)

pseudo scalar B->K,π 3 (main) form factors vectors B->K* et al 7 (main) form factors

lattice: unquenched (staggered)
 Bouchard et al'13
 LCSR: twist-3 O(a_s)

Ball RZ'04 , Khodjamirian et al'08,10?

 lattice: unquenched (staggered) Horgan et al'13
 LCSR: twist-3 O(a_s)
 Ball RZ'04 , Bharucha, Straub, RZ'15
 LCSR: B-meson DA, tree-level
 Mannel, Offen, Khodjamirian 06

 general: low-q² meson fast light-cone methods LCSR high-q² meson slow lattice (effective theory b)

pseudo scalar B->K,π 3 (main) form factors vectors B->K* et al 7 (main) form factors

lattice: unquenched (staggered)
 Bouchard et al'13
 LCSR: twist-3 O(a_s)

Ball RZ'04, Khodjamirian et al'08,10?

 lattice: unquenched (staggered) Horgan et al'13
 LCSR: twist-3 O(a_s)
 Ball RZ'04 , Bharucha, Straub, RZ'15
 LCSR: B-meson DA, tree-level
 Mannel, Offen, Khodjamirian 06

report progress on recent update vector form factors

 $\langle K^*(p,\eta) | \bar{s}iq_{\nu} \sigma^{\mu\nu} (1\pm\gamma_5) b | \bar{B}(p_B) \rangle = P_1^{\mu} T_1(q^2) \pm P_2^{\mu} T_2(q^2) \pm P_3^{\mu} T_3(q^2)$ $\langle K^*(p,\eta) | \bar{s} \gamma^{\mu} (1\mp\gamma_5) b | \bar{B}(p_B) \rangle = P_1^{\mu} \mathcal{V}_1(q^2) \pm P_2^{\mu} \mathcal{V}_2(q^2) \pm P_3^{\mu} \mathcal{V}_3(q^2) \pm P_P^{\mu} \mathcal{V}_P(q^2)$

Π

 $\langle K^*(p,\eta) | \bar{s}iq_{\nu} \sigma^{\mu\nu} (1\pm\gamma_5) b | \bar{B}(p_B) \rangle = P_1^{\mu} T_1(q^2) \pm P_2^{\mu} T_2(q^2) \pm P_3^{\mu} T_3(q^2)$ $\langle K^*(p,\eta) | \bar{s} \gamma^{\mu} (1\mp\gamma_5) b | \bar{B}(p_B) \rangle = P_1^{\mu} \mathcal{V}_1(q^2) \pm P_2^{\mu} \mathcal{V}_2(q^2) \pm P_3^{\mu} \mathcal{V}_3(q^2) \pm P_P^{\mu} \mathcal{V}_P(q^2)$

• 4 directions:

•

$$\begin{split} P_P^{\mu} &= i(\eta^* \cdot q)q^{\mu} \;, \\ P_2^{\mu} &= i\{(m_B^2 - m_{K^*}^2)\eta^{*\mu} - (\eta^* \cdot q)(p + p_B)^{\mu}\} \;, \end{split}$$

$$\begin{split} P_1^{\mu} = & 2\epsilon^{\mu}{}_{\alpha\beta\gamma}\eta^{*\alpha}p^{\beta}q^{\gamma} , \\ P_3^{\mu} = & i(\eta^* \cdot q)\{q^{\mu} - \frac{q^2}{m_B^2 - m_{K^*}^2}(p + p_B)^{\mu}\} \end{split}$$

in terms of traditional notation:

$$\mathcal{V}_P(q^2) = \frac{-2m_{K^*}}{q^2} A_0(q^2) , \quad \mathcal{V}_1(q^2) = \frac{-V(q^2)}{m_B + m_{K^*}} , \quad \mathcal{V}_2(q^2) = \frac{-A_1(q^2)}{m_B - m_{K^*}} ,$$
$$\mathcal{V}_3(q^2) = \left(\frac{m_B + m_{K^*}}{q^2} A_1(q^2) - \frac{m_B - m_{K^*}}{q^2} A_2(q^2)\right) \equiv \frac{2m_{K^*}}{q^2} A_3(q^2) .$$

algebraically: $T_1(0) = T_2(0)$ regularity: $A_0(0) = A_3(0)$

Π

Form factors & LCSR use appropriate correlation function Γ

Form factors & LCSR use appropriate correlation function Γ

• sum rule on one line:

local

K*

B

Π

II.b.1 results & error correlations

computation based on Ball & RZ'04 + O(ms)-tree + updated hadronic input

Bharucha, Straub, RZ 1503.05534

Error correlation of form factors

- idea: use input-uncertainty matrix to generate pseudo-data O(100pts) for all 7 form factors
 ⇒ fit-ansatz with (α₀, α₁,..)-parameters
 - provide full correlation-matrix "easy-to-implement"

Error correlation of form factors

 idea: use input-uncertainty matrix to generate pseudo-data O(100pts) for all 7 form factors

> ⇒ fit-ansatz with (α₀,α₁,..)-parameters provide full correlation-matrix "easy-to-implement"

from Horgan, Liu, Meinel, Wingate'13

note: lattice with correlated errors as well

Combined LCSR & lattice plots

⊥-helicity

I-helicity

0-helicity

II.b.2 the use of the equation of motion (EOM)

Grinstein Pirjol'04 study correction to Isgur-Wise relation Hambrock, Hiller, Schacht, RZ '13 first application LCSR Bharucha, Straub, RZ '15 more systematic exploitation

- · constrains vector-to-tensor form factor for fixed helicity
- importance for B->K*II since zero of helicity amplitude largely determined by form factors

 $H_{\perp}^{B \to V \ell \ell} \sim ..C_7^{\text{eff}} T_1(q^2) + ..C_9^{\text{eff}} V(q^2) + \text{long} \text{ distance}$

In particular $P'_5 \sim \operatorname{Re}[H_0H_{\perp}]$ for instance

EOM in QFT \Leftrightarrow relations between correlation functions

the following equation valid on <K*I...IB>:

 $i\partial^{\nu}(\bar{s}i\sigma_{\mu\nu}(\gamma_5)b) = -(m_s \pm m_b)\bar{s}\gamma_{\mu}(\gamma_5)b + i\partial_{\mu}(\bar{s}(\gamma_5)b) - 2\bar{s}i\overleftarrow{D}_{\mu}(\gamma_5)b,$

EOM in QFT \Leftrightarrow relations between correlation functions

the following equation valid on <K*I...IB>:

where *D_i*'s are form factors of derivative operator:

 $\langle K^*(p,\eta) | \bar{s}(2i\overset{\leftarrow}{D})^{\mu}(1\pm\gamma_5)b | \bar{B}(p_B) \rangle = P_1^{\mu} \mathcal{D}_1(q^2) \pm P_2^{\mu} \mathcal{D}_2(q^2) \pm P_3^{\mu} \mathcal{D}_3(q^2) \pm P_P^{\mu} \mathcal{D}_P(q^2)$

- Any form factor determination has to obey EOM \Rightarrow consistency check
 - LCSR checked EOM at tree-level including O(m_s)-corrections works upon use of EOM of vector meson distribution amplitudes
 - lattice (future computations)

- Any form factor determination has to obey EOM ⇒ consistency check
 - LCSR checked EOM at tree-level including O(m_s)-corrections works upon use of EOM of vector meson distribution amplitudes
 - lattice (future computations)
 - Recall $F_i = F_i\{m_b, \alpha_s, f^{\parallel}, f^{\perp}, ..\} | \{s_0, M_{\text{Borel}}\}] (q^2)$ One way to obey EOM set: $s_0[T_1] = s_0[V_1] = s_0[D_1]$
 - eliminates the major source of uncertainty T_1/V -ratio [rest O(1%)]
 - of course this has to be questioned

- Any form factor determination has to obey EOM ⇒ consistency check
 - LCSR checked EOM at tree-level including O(m_s)-corrections works upon use of EOM of vector meson distribution amplitudes
 - lattice (future computations)
 - Recall $F_i = F_i\{m_b, \alpha_s, f^{\parallel}, f^{\perp}, ..\} | \{s_0, M_{\text{Borel}}\}] (q^2)$ One way to obey EOM set: $s_0[T_1] = s_0[V_1] = s_0[D_1]$
 - eliminates the major source of uncertainty T_1/V -ratio [rest O(1%)]
 - of course this has to be questioned

... yet:
$$T_1(q^2) + (m_b + m_s)\mathcal{V}_1(q^2) + \mathcal{D}_1(q^2) = 0$$

 $0.294 \quad -0.272 \quad -0.022$
 $s_0^{T_1} \simeq 35 \,\text{GeV}^2 \quad s_0^V = s_0^{T_1} \pm 1 \,\text{GeV}^2 \quad s_0^{\mathcal{D}_1} = s_0^{T_1} \begin{pmatrix} \pm 15 \\ -6.5 \end{pmatrix} \,\text{GeV}^2$
 $\pm \frac{55}{-63}\%$ -shift in \mathcal{D}_1

• Hence if D_1 is considered form factor then $|s_0^{T_1} - s_0^V| < 1 \,\mathrm{GeV}^2$

• Hence if D_1 is considered form factor then $|s_0^{T_1} - s_0^V| < 1 \,\mathrm{GeV}^2$ checked that **twist** and α_s -expansion is controlled (\Rightarrow more than a numerical accident) • Hence if D_1 is considered form factor then $|s_0^{T_1} - s_0^V| < 1 \,\mathrm{GeV}^2$ \swarrow checked that **twist** and α_s -expansion is controlled (\Rightarrow more than a numerical accident)

note added

٠

- similar to large energy Charles et al '98 limit and SCET investigations Beneke Feldmann '00, Bauer et al'01
 similarity: both use equation of motion difference: LCSR EOM in QCD — SCET EOM effective theory 1/mb
 - \Rightarrow ratios equal up to 1/m_b to "SCET-ratios" in Beneke Feldmann '00

note added

۲

- similar to large energy Charles et al '98 limit and SCET investigations Beneke Feldmann '00, Bauer et al'01
 similarity: both use equation of motion difference: LCSR EOM in QCD — SCET EOM effective theory 1/m_b
 ⇒ ratios equal up to 1/m_b to "SCET-ratios" in Beneke Feldmann '00
- numerical comparison LCSR vs heavy quark limes

phenomenological discussion

$B_s \rightarrow \phi$ vs B→K* tension |V_{ub}| from B→(ρ,ω)|∨

phenomenological discussion

$B_s \rightarrow \phi$ vs B→K* tension |V_{ub}| from B→(ρ,ω)|∨

new predictions picture same: "we're off by factor of 2" **shape ok** — is there a **problem** with **form factor normalisation?** look at ratio $B_s \rightarrow \phi/B \rightarrow K^*$ where normalisation effects cancel ... $B_s \rightarrow \varphi$ vs $B \rightarrow K^*$ tension

• at q²=0 to photons

$$R_{K^*\phi}^{(\gamma)} \equiv \frac{\text{BR}(B^0 \to K^{*0}\gamma)}{\text{BR}(B_s \to \phi\gamma)} \qquad \begin{array}{ll} \text{Lyon, RZ '13} & \text{LHCb '12 1202.6267} \\ 0.78(18) & 1.23(32) \end{array}$$

 $B_s \rightarrow \varphi$ vs $B \rightarrow K^*$ tension

• at q²=0 to photons

$$R_{K^*\phi}^{(\gamma)} \equiv \frac{\text{BR}(B^0 \to K^{*0}\gamma)}{\text{BR}(B_s \to \phi\gamma)} \qquad \begin{array}{ll} \text{Lyon, RZ '13} & \text{LHCb '12 1202.6267} \\ 0.78(18) & 1.23(32) \end{array}$$

• statistically not significant but persists at higher q²

 $B_s \rightarrow \varphi$ vs $B \rightarrow K^*$ tension

• at q²=0 to photons

$$R_{K^*\phi}^{(\gamma)} \equiv \frac{\text{BR}(B^0 \to K^{*0}\gamma)}{\text{BR}(B_s \to \phi\gamma)} \qquad \begin{array}{ll} \text{Lyon, RZ '13} & \text{LHCb '12 1202.6267} \\ 0.78(18) & 1.23(32) \end{array}$$

• statistically not significant but persists at higher q²

$$R_{K^*\phi}[q_1, q_2] \equiv \frac{d \mathrm{BR}(B^0 \to K^{*0}\ell^+\ell^-)/dq^2|_{[q_1, q_2]}}{d \mathrm{BR}(B_s \to \phi \ell^+\ell^-)/dq^2|_{[q_1, q_2]}}$$

origin of differences?

- lifetimes (effect small)
- weak annihilation taken from Lyon, RZ '13
- form factors determined mainly determined by decay constants ...

$|V_{ub}|$ from $B \rightarrow (\rho, \omega) I \vee$

involves vector form factors

note: B-factory IV_{ub}I-values (could raise) if S-wave subtracted using ang-analysis

$|V_{ub}|$ from $B \rightarrow (\rho, \omega) I \nu$

involves vector form factors

⇒ no sign of (serious) normalisation problems as questioned by $B_s \rightarrow \varphi \mu \mu$

note: B-factory IV_{ub}I-values (could raise) if S-wave subtracted using ang-analysis

I.C background effects (decaying vector meson)

how to deal with unstable particles?

how to deal with unstable particles?

theory definition: pole on second sheet
a) derive Breit-Wigner otherwise b) little use

how to deal with unstable particles?

- theory definition: pole on second sheet
 a) derive Breit-Wigner otherwise b) little use
- signal PP-final state: B→ρ(→ππ)Iv = signal ... ππ in P-wave (S-wave etc ought to be subtract)

how to deal with unstable particles?

- theory definition: pole on second sheet
 a) derive Breit-Wigner otherwise b) little use
- signal PP-final state: $B \rightarrow \rho(\rightarrow \pi\pi) Iv = signal \dots \pi\pi$ in P-wave (S-wave etc ought to be subtract)
- experiment: project out P-wave ansatz P-wave amplitude ρ and ρ',ρ" maybe more background more data ansatz refined (LHCb is pushing standards)

how vector meson described in light-cone approach?

• through light-cone DA — mainly f_{ρ} meson decay constant

the latter extracted from experiment - e.g. tau decays

how vector meson described in light-cone approach?

• through light-cone DA — mainly f_{ρ} meson decay constant

the latter extracted from experiment - e.g. tau decays

treat $\tau \rightarrow (\mathbf{m})_{P-w}$ lv same way in extraction of f_{ρ} as in $B \rightarrow \rho (\rightarrow \mathbf{m})$ lv

how vector meson described in light-cone approach?

• through light-cone DA — mainly f_{ρ} meson decay constant

the latter extracted from experiment - e.g. tau decays

treat $\tau \rightarrow (\mathbf{m})_{P-w}$ lv same way in extraction of f_{ρ} as in $B \rightarrow \rho (\rightarrow \mathbf{m})$ lv

lot of these experiments a bit old not same standards as today

 > important to do new measurements
 > PDG effort to check old input on tau decays e+e—>p etc
 For example PDG'06 vs PDG'12 lowers f_{K*} by 7% and therefore
 form factor by 7%!

treat vector meson the same way in every experiment

• q2-binning helps to disentangle SD from LD effects relevant tensions

- q2-binning helps to disentangle SD from LD effects relevant tensions
- equation of motion & correlated errors for form factors help to predict angular observables like P₅' with higher precision

- q2-binning helps to disentangle SD from LD effects relevant tensions
- equation of motion & correlated errors for form factors help to predict angular observables like P₅' with higher precision
- useful if PDG introduced standards for treating vector mesons as old experiments are input to compare theory to new experiments!

- q2-binning helps to disentangle SD from LD effects relevant tensions
- equation of motion & correlated errors for form factors help to predict angular observables like P₅' with higher precision
- useful if PDG introduced standards for treating vector mesons as old experiments are input to compare theory to new experiments!

thanks for your attention

Backup

Why is it so small? is K* special?

- assuming $m_q=0$, one closed Dirac trace, leading twist-2, V-A

$$\mathcal{A}(B \to V(p)\gamma(q)^*) = \epsilon(q)_{\mu} \operatorname{tr}[\eta p I^{\mu}(1-\gamma_5)] \sim I_2$$

Ansatz: $I^{\mu} = I_0^{\mu} + I_1 p \gamma^{\mu} + I_2 q \gamma^{\mu} + I_3^{\mu} p q$
Dimou, Lyon, RZ'12
(appendix)

one structure survives (like large energy limit ...)

 \Rightarrow H₋ = 0 + O(q²,m_V²,m_s) - suppression systematic leading twist 2

Why is it so small? inclusive is K*

inclusive = sum of exclusive is K* special?

assuming m_q=0, one closed Dirac trace, leading twist-2, V-A

$$\mathcal{A}(B \to V(p)\gamma(q)^*) = \epsilon(q)_{\mu} \operatorname{tr}[\eta p I^{\mu}(1 - \gamma_5)] \sim I_2$$

Ansatz: $I^{\mu} = I_0^{\mu} + I_1 \not p \gamma^{\mu} + I_2 \not q \gamma^{\mu} + I_3^{\mu} \not p \not q$

Dimou, Lyon, RZ'12 (appendix)

one structure survives (like large energy limit ...)

 \Rightarrow H₋ = 0 + O(q²,m_V²,m_s) - suppression systematic leading twist 2

attempt to answer questions:

1.natural to use twist-3 to look for effects:

twist-3

Why is it so small?

inclusive = sum of exclusive is K* special?

• assuming $m_q=0$, one closed Dirac trace, leading twist-2, V-A

$$\mathcal{A}(B \to V(p)\gamma(q)^*) = \epsilon(q)_{\mu} \operatorname{tr}[\eta p I^{\mu}(1-\gamma_5)] \sim I_2$$

Ansatz: $I^{\mu} = I_0^{\mu} + I_1 \not p \gamma^{\mu} + I_2 \not q \gamma^{\mu} + I_3^{\mu} \not p \not q$

Dimou, Lyon, RZ'12 (appendix)

one structure survives (like large energy limit ...)

 \Rightarrow H₋ = 0 + O(q²,m_V²,m_s) - suppression systematic leading twist 2

attempt to answer questions:

1.natural to use twist-3 to look for effects:

2.heavy use of light-cone dynamics - might well be different for higher resonances and might be a way to partially **reconcile** with **inclusive decay!**

II.C comment charm resonances in $B \rightarrow K^{(*)}II$

 $BF(B \to K\ell\ell)$

LHCb PRL 111 (2013)

pronounced $J^{PC} = 1 - charm$ resonance structure

 Using a fit to BES-II data e⁺e⁻→hadrons able to check status of "naive" factorisation at high q² in B→KII

 Using a fit to BES-II data e⁺e⁻→hadrons able to check status of "naive" factorisation at high q² in B→KII

naive fac. by factor \sim (-2.5) fits the data well

 Led us to speculate P₅'-anomaly in B→K ^(*)II might be related to charm (since charm pronounced)

1) pronounced to J/ Ψ 2) accommodated by photon penguin C₁₀ not nec.

 Led us to speculate P₅'-anomaly in B→K (*)II might be related to charm (since charm pronounced)

1) pronounced to J/ Ψ 2) accommodated by photon penguin C₁₀ not nec.

- effect same sign as in naive fac. in "-" versus "0" helicity
- <u>my comment</u>: that's what
 B→ J/Ψ K* experimental
 angular analysis predicts
 for J/Ψ,Ψ(2S)-contributions

 using 2-pion DA (def e.g. Polyakov'98) to describe B(→ππ)Iv requires determination of the 2-pion DA

- using 2-pion DA (def e.g. Polyakov'98) to describe B(→ππ)Iv requires determination of the 2-pion DA
- for 0th Gegenbauer moment of vector 2-pion DA = pion form factor

$$F_{i}^{B \to \pi\pi}(q^{2}) = \begin{cases} \rho - \mathrm{DA}: & \frac{\langle \pi\pi | \rho \rangle}{m_{\pi\pi}^{2} - m_{\rho}^{2} + im_{\rho}\Gamma_{\rho}} \underbrace{\langle \rho | V_{\mu} | 0 \rangle}_{\sim f_{\rho}^{\parallel}} f_{B}^{\mu}(q^{2}) + \dots \\ & \pi\pi - \mathrm{DA}: & \underbrace{\langle \pi\pi | V_{\mu} | 0 \rangle}_{\sim F^{\pi \to \pi}(m_{\pi\pi}^{2})} f_{B}^{\mu}(q^{2}) + \dots \\ & & \overset{\wedge}{\to} \frac{f_{\rho}^{\parallel} m_{\rho} g_{\rho\pi\pi}}{m_{\pi\pi}^{2} - m_{\rho}^{2} - im_{\rho}\Gamma_{\rho}} \underbrace{\text{other } f_{\rho}^{\parallel} m_{\rho} g_{\rho\pi\pi}}_{\text{repeats only for a started of the started$$

skip no time

- using 2-pion DA (def e.g. Polyakov'98) to describe B(→ππ)Iv requires determination of the 2-pion DA
- for 0th Gegenbauer moment of vector 2-pion DA = pion form factor

$$F_{i}^{B \to \pi\pi}(q^{2}) = \begin{cases} \rho - \mathrm{DA}: & \frac{\langle \pi\pi | \rho \rangle}{m_{\pi\pi}^{2} - m_{\rho}^{2} + im_{\rho}\Gamma_{\rho}} \underbrace{\langle \rho | V_{\mu} | 0 \rangle}_{\sim f_{\rho}^{\parallel}} f_{B}^{\mu}(q^{2}) + \dots \\ & \pi\pi - \mathrm{DA}: & \underbrace{\langle \pi\pi | V_{\mu} | 0 \rangle}_{\sim F^{\pi \to \pi}(m_{\pi\pi}^{2})} f_{B}^{\mu}(q^{2}) + \dots \\ & & \overset{\wedge}{\to} \frac{f_{\rho}^{\parallel} m_{\rho}g_{\rho\pi\pi}}{m_{\pi\pi}^{2} - m_{\rho}^{2} - im_{\rho}\Gamma_{\rho}} \underbrace{\operatorname{other}}_{repeats and repeats and repeats on the repeater of the set of the set$$

skip no time

yet higher moments or tensor 2-pion DA no experimental info available

- using 2-pion DA (def e.g. Polyakov'98) to describe B(→ππ)Iv requires determination of the 2-pion DA
- for 0th Gegenbauer moment of vector 2-pion DA = pion form factor

$$F_{i}^{B \to \pi\pi}(q^{2}) = \begin{cases} \rho - \mathrm{DA}: & \frac{\langle \pi\pi | \rho \rangle}{m_{\pi\pi}^{2} - m_{\rho}^{2} + im_{\rho}\Gamma_{\rho}} \underbrace{\langle \rho | V_{\mu} | 0 \rangle}_{\sim f_{\rho}^{\parallel}} f_{B}^{\mu}(q^{2}) + \dots \\ & \pi\pi - \mathrm{DA}: & \underbrace{\langle \pi\pi | V_{\mu} | 0 \rangle}_{\sim F^{\pi \to \pi}(m_{\pi\pi}^{2})} f_{B}^{\mu}(q^{2}) + \dots \\ & & \overset{\sim}{\sim} F^{\pi \to \pi}(m_{\pi\pi}^{2}) \end{cases} \rightarrow \frac{f_{\rho}^{\parallel} m_{\rho} g_{\rho\pi\pi}}{m_{\pi\pi}^{2} - m_{\rho}^{2} - im_{\rho}\Gamma_{\rho}} \underbrace{\operatorname{other}}_{repeats and repeats on the same set to the s$$

skip no time

- yet higher moments or tensor 2-pion DA no experimental info available
- p-DA uncertainties in (other) parameters take care of background effects in error budget

- using 2-pion DA (def e.g. Polyakov'98) to describe B(→ππ)Iv requires determination of the 2-pion DA
- for 0th Gegenbauer moment of vector 2-pion DA = pion form factor

$$F_{i}^{B \to \pi\pi}(q^{2}) = \begin{cases} \rho - \mathrm{DA} : & \frac{\langle \pi\pi | \rho \rangle}{m_{\pi\pi}^{2} - m_{\rho}^{2} + im_{\rho}\Gamma_{\rho}} \underbrace{\langle \rho | V_{\mu} | 0 \rangle}_{\sim f_{\rho}^{\parallel}} f_{B}^{\mu}(q^{2}) + \dots \\ & \pi\pi - \mathrm{DA} : & \underbrace{\langle \pi\pi | V_{\mu} | 0 \rangle}_{\sim F^{\pi \to \pi}(m_{\pi\pi}^{2})} f_{B}^{\mu}(q^{2}) + \dots \\ & & \overset{\wedge}{} \frac{f_{\rho}^{\parallel} m_{\rho} g_{\rho\pi\pi}}{m_{\pi\pi}^{2} - m_{\rho}^{2} - im_{\rho}\Gamma_{\rho}} \underbrace{\operatorname{other}}_{repeats and repeats on the source of the source of$$

skip no time

- yet higher moments or tensor 2-pion DA no experimental info available
- p-DA uncertainties in (other) parameters take care of background effects in error budget

around ρ-meson peak do not see pragmatic advantage in near future of using 2-pion DA