$\mathfrak{J}->\mathcal{V} \boldsymbol{\prime}$ QCD Aspects

Roman Zwicky
Edinburgh University

11-13 May b->sIl in 2015 (Workshop-Edinburgh)

structure

I. motivation
II. short and long distance - overview Il.a long distance II.b short distance - form factors II.c a note vector mesons (decay constants et al)

III summary

Of current importance ... anomalies B->K*ll et al

$$
A_{F B}=\frac{\Gamma\left(\cos \theta_{B C^{+}}>0\right)-\Gamma\left(\cos \theta_{B C^{\prime}}<0\right)}{\Gamma\left(\cos \theta_{B C^{\prime}}>0\right)+\Gamma\left(\cos \theta_{B C^{\prime}}<0\right)}
$$

$$
\begin{aligned}
H_{\perp}^{L, R}= & {\left[\left(\mathcal{C}_{9}+\mathcal{C}_{9^{\prime}}\right) \mp\left(\mathcal{C}_{10}+\mathcal{C}_{1^{\prime}}\right)\right] \frac{V}{M_{B}+M_{K^{*}}}+\frac{2 m_{b}}{q^{2}}\left(\mathcal{C}_{7}+\mathcal{C}_{7^{\prime}}\right) T_{1} } \\
& + \text { long - distance }
\end{aligned}
$$

a) pronounced towards J / Ψ
b) photon penguin only - C_{10} (no long-distance) not necessary
c) high q^{2} charm very pronounced (tomorrow)
altogether suggests (at least a large part) in $\mathrm{P}_{5}{ }^{\prime}$ et al is due to charm
a) pronounced towards J / Ψ
b) photon penguin only - C_{10} (no long-distance) not necessary
c) high q^{2} charm very pronounced (tomorrow)
altogether suggests (at least a large part) in $\mathrm{P}_{5}{ }^{\prime}$ et al is due to charm

- Moriond 2015 data

Straub's talk Moriond'15

- effect same sign as in naive fac. in "-" versus "0" helicity
- my comment: that's what $B \rightarrow J / \Psi K^{*}$ experimental angular analysis predicts for $J / \Psi, \Psi(2 S)$-contributions
- then $\mathbf{R}_{\mathbf{k}}$-anomaly (2.6б) came along and there charm should play no role and this points towards true short-distance new physics

LHCb, PRL 113 (2014) 151601
Belle, PRL 103 (2009) 171801
Babar, PRD 86 (2012) 032012

$$
\mathrm{R}_{\mathrm{K}}=\mathfrak{B}\left(\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mu^{+} \mu^{-}\right) / \mathfrak{B}\left(\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{e}^{+} \mathrm{e}^{-}\right)
$$

- what are the size of QED corrections? QED corrections expected smaller than central-value effect (some talks tomorrow)
- then $\mathbf{R}_{\mathbf{k}}$-anomaly (2.6б) came along and there charm should play no role and this points towards true short-distance new physics

LHCb, PRL 113 (2014) 151601
Belle, PRL 103 (2009) 171801
Babar, PRD 86 (2012) 032012

$$
\mathrm{R}_{\mathrm{K}}=\mathfrak{B}\left(\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mu^{+} \mu^{-}\right) / \mathfrak{B}\left(\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{e}^{+} \mathrm{e}^{-}\right)
$$

- what are the size of QED corrections? QED corrections expected smaller than central-value effect (some talks tomorrow)
- $\mathrm{B}_{\mathrm{s}} \boldsymbol{\rightarrow} \boldsymbol{\phi}$ vs $\mathrm{B} \rightarrow \mathrm{K}^{*}$ tension in branching fraction (later)

tensions (anomalies): call for closer look of QCD evaluation

topic of this talk: what are these

- short-distance (SD) contributions - form factor
- long-distance (LD) contributions

topologies

another look

another look

$$
\mathcal{A}=\langle V l| H_{\mathrm{eff}}|B\rangle=\sum_{i} C_{i}\left(m_{b}\right)\left(\sqrt{\left(v l l\left|O_{i}\left(m_{b}\right)\right| B\right\rangle}\right) \quad \text { 4molitud} d_{e}
$$

non-perturbative fcts of q^{2}

- Old principle of analyticity, unitarity etc: any amplitude determined by its singularities e.g. poles (intermediate single particles) branch cuts (intermediate multi-particles)

- two large momenta
$-\mathrm{pB}^{2}=\mathrm{m}_{\mathrm{B}}{ }^{2}$ fixed
$-4 m_{l}{ }^{2}<q^{2}<\left(m_{B}-m_{K^{*}}\right)^{2}$ trace them

short vs long distance

SD = form factor local int.

shape q^{2} dictated by $m_{B^{*-}}$ pole (outside physical region)

short vs long distance

$S D=$ form factor local int.

shape q^{2} dictated by $\mathrm{m}_{\mathrm{B}^{*}}$-pole (outside physical region)

cut $\mathrm{PB}^{2}=\mathrm{m}_{\mathrm{B}}{ }^{2}$ fixed — interpretation:
Multihadron state $(\bar{s} q)_{0 \pm} \mathrm{q}$-number
result: strong phases
status: believed to be without problem many states (broad) s.t. partonic QCD is trustworthy

long distance and \mathbf{q}^{2}-singularities

long distance and \mathbf{q}^{2}-singularities

- radiation from light-quark

taken care of by photon DA
characteristic $1 / q^{2}$ fall-off

long distance and \mathbf{q}^{2}-singularities

- radiation from light-quark

taken care of by photon DA characteristic $1 / q^{2}$ fall-off
- radiation from charm quark

required closer look and theory and experiment working together (tomorrow)

long-distance brief overview status

QCDF

1) depends B-meson DA
2) at $1 / m$
endpoint divergences

1/m
accidental?

```
the 1/m
    divergent
```

idem

LCSR

1) depend on spurious momentum and analytic continuation thereof 2) includes photon DA photon DA sizeable Khodjamirian et al'95 Ali Braun'95 Lyon, RZ'13

Dimou, Lyon, RZ'12
not done (some work)
various bits done
Ball, Jones, RZ'06,
Khodjamirian et al'10, ..later

Bosch, Buchalla'01
Beneke, Feldman, Seidel'01

generally:

to disentangle short from long-distance effects need fine q^{2}-binning

II.b form factors - short distance

- general: low-q² meson fast light-cone methods LCSR high-q² meson slow lattice (effective theory b)

II.b form factors - short distance

- general: low-q² meson fast light-cone methods LCSR high-q² meson slow lattice (effective theory b)

pseudo scalar B->K, \quad,
3 (main) form factors
- lattice: unquenched (staggered)

Bouchard et al'13|
LCSR: twist-3 O(a_{s})
Ball RZ'04, Khodjamirian et al'08,10?

II.b form factors - short distance

- general: low-q² meson fast light-cone methods LCSR high-q² meson slow lattice (effective theory b)

pseudo scalar B->K, π
3 (main) form factors
- lattice: unquenched (staggered)

Bouchard et al'13|
LCSR: twist-3 O(as)
Ball RZ'04 , Khodjamirian et al'08,10?

- lattice: unquenched (staggered)

Horgan et al'13|
LCSR: twist-3 O(a_{s})
Ball RZ'04 , Bharucha, Straub, RZ'15
LCSR: B-meson DA, tree-level
Mannel, Offen, Khodjamirian 06

II.b form factors - short distance

- general: low-q² meson fast light-cone methods LCSR high-q² meson slow lattice (effective theory b)

pseudo scalar B->K, π
3 (main) form factors
vectors $B->K^{*}$ et al
7 (main) form factors
- lattice: unquenched (staggered)

Bouchard et al'13|
LCSR: twist-3 O(a_{s})
Ball RZ'04 , Khodjamirian et al'08,10?

- lattice: unquenched (staggered)

Horgan et al'13|
LCSR: twist-3 O(a_{s})
Ball RZ'04 , Bharucha, Straub, RZ'15
LCSR: B-meson DA, tree-level
Mannel, Offen, Khodjamirian 06
report progress on recent update vector form factors

Definition of form factors

- tensor \& vector form factors

$$
\begin{aligned}
& \left\langle K^{*}(p, \eta)\right| \bar{s} i q_{\nu} \sigma^{\mu \nu}\left(1 \pm \gamma_{5}\right) b\left|\bar{B}\left(p_{B}\right)\right\rangle=P_{1}^{\mu} T_{1}\left(q^{2}\right) \pm P_{2}^{\mu} T_{2}\left(q^{2}\right) \pm P_{3}^{\mu} T_{3}\left(q^{2}\right) \\
& \left\langle K^{*}(p, \eta)\right| \bar{s} \gamma^{\mu}\left(1 \mp \gamma_{5}\right) b\left|\bar{B}\left(p_{B}\right)\right\rangle=P_{1}^{\mu} \mathcal{V}_{1}\left(q^{2}\right) \pm P_{2}^{\mu} \mathcal{V}_{2}\left(q^{2}\right) \pm P_{3}^{\mu} \mathcal{V}_{3}\left(q^{2}\right) \pm P_{P}^{\mu} \mathcal{V}_{P}\left(q^{2}\right)
\end{aligned}
$$

Definition of form factors

- tensor $\&$ vector form factors

$$
\begin{aligned}
& \left\langle K^{*}(p, \eta)\right| \bar{s} i q_{\nu} \sigma^{\mu \nu}\left(1 \pm \gamma_{5}\right) b\left|\bar{B}\left(p_{B}\right)\right\rangle=P_{1}^{\mu} T_{1}\left(q^{2}\right) \pm P_{2}^{\mu} T_{2}\left(q^{2}\right) \pm P_{3}^{\mu} T_{3}\left(q^{2}\right) \\
& \left\langle K^{*}(p, \eta)\right| \bar{s} \gamma^{\mu}\left(1 \mp \gamma_{5}\right) b\left|\bar{B}\left(p_{B}\right)\right\rangle=P_{1}^{\mu} \mathcal{V}_{1}\left(q^{2}\right) \pm P_{2}^{\mu} \mathcal{V}_{2}\left(q^{2}\right) \pm P_{3}^{\mu} \mathcal{V}_{3}\left(q^{2}\right) \pm P_{P}^{\mu} \mathcal{V}_{P}\left(q^{2}\right)
\end{aligned}
$$

- 4 directions:
$P_{P}^{\mu}=i\left(\eta^{*} \cdot q\right) q^{\mu}$,

$$
P_{1}^{\mu}=2 \epsilon_{\alpha \beta \gamma}^{\mu} \eta^{* \alpha} p^{\beta} q^{\gamma},
$$

$P_{2}^{\mu}=i\left\{\left(m_{B}^{2}-m_{K^{*}}^{2}\right) \eta^{* \mu}-\left(\eta^{*} \cdot q\right)\left(p+p_{B}\right)^{\mu}\right\}$,

$$
P_{3}^{\mu}=i\left(\eta^{*} \cdot q\right)\left\{q^{\mu}-\frac{q^{2}}{m_{B}^{2}-m_{K^{*}}^{2}}\left(p+p_{B}\right)^{\mu}\right\}
$$

- in terms of traditional notation:

$$
\begin{aligned}
& \mathcal{V}_{P}\left(q^{2}\right)=\frac{-2 m_{K^{*}}}{q^{2}} A_{0}\left(q^{2}\right), \quad \mathcal{V}_{1}\left(q^{2}\right)=\frac{-V\left(q^{2}\right)}{m_{B}+m_{K^{*}}}, \quad \mathcal{V}_{2}\left(q^{2}\right)=\frac{-A_{1}\left(q^{2}\right)}{m_{B}-m_{K^{*}}}, \\
& \mathcal{V}_{3}\left(q^{2}\right)=\left(\frac{m_{B}+m_{K^{*}}}{q^{2}} A_{1}\left(q^{2}\right)-\frac{m_{B}-m_{K^{*}}}{q^{2}} A_{2}\left(q^{2}\right)\right) \equiv \frac{2 m_{K^{*}}}{q^{2}} A_{3}\left(q^{2}\right)
\end{aligned}
$$

algebraically:
$T_{1}(0)=T_{2}(0)$
regularity:
$A_{0}(0)=A_{3}(0)$

Form factors \& LCSR use appropriate correlation function 「

Form factors \& LCSR use appropriate correlation function 「

- sum rule on one line:

$$
\frac{V\left(q^{2}\right)}{p_{B}^{2}-m_{B}^{2}}+\int_{\text {threshold }} \frac{d s}{\pi} \frac{\operatorname{Im} \Gamma^{V}\left(s, q^{2}\right)}{\left(s-p_{B}^{2}-i 0\right)}=\left.\Gamma^{V}\left(p_{B}^{2}, q^{2}\right)\right|_{\mathrm{LCOPE}}
$$

want
$\left\langle K^{*}\right| V_{\mu}|B\rangle$
estimate
$\left\langle K^{*}\right| V_{\mu}|B \pi \pi\rangle+$.

compute

twist \& α_{s}-epxansion

Form factors \& LCSR use appropriate correlation function 「

- sum rule on one line:

$$
\frac{V\left(q^{2}\right)}{p_{B}^{2}-m_{B}^{2}}+\int_{\text {threshold }} \frac{d s}{\pi} \frac{\operatorname{Im} \Gamma^{V}\left(s, q^{2}\right)}{\left(s-p_{B}^{2}-i 0\right)}=\left.\Gamma^{V}\left(p_{B}^{2}, q^{2}\right)\right|_{\mathrm{LCOPE}}
$$

input \Rightarrow correlation between form factors I.A
sum rule parameters some help equation of motion I.B

II.b. 1 results \& error correlations

computation based on Ball \& RZ'04 $+\mathrm{O}(\mathrm{ms})$-tree + updated hadronic input
Bharucha, Straub, RZ 1503.05534

Error correlation of form factors

- idea: use input-uncertainty matrix to generate pseudo-data O(100pts) for all 7 form factors
\Rightarrow fit-ansatz with $\left(a_{0}, a_{1}, ..\right)$-parameters provide full correlation-matrix "easy-to-implement"

Error correlation of form factors

- idea: use input-uncertainty matrix to generate pseudo-data O(100pts) for all 7 form factors
\Rightarrow fit-ansatz with $\left(a_{0}, a_{1}, ..\right)$-parameters provide full correlation-matrix "easy-to-implement"
- we use:

$$
F_{i}\left(q^{2}\right)=\frac{1}{1-q^{2} / m_{R, i}^{2}} \sum_{k} \alpha_{k}^{i}\left[z\left(q^{2}\right)-z(0)\right]^{k},
$$

LCSR: $0<q^{2}<14 G^{2} V^{2}$
"entire range" combined with lattice

Combined LCSR \& lattice plots

\perp-helicity

"-helicity
0-helicity

II.b. 2 the use of the equation of motion (EOM)

Grinstein Pirjol'04 study correction to Isgur-Wise relation
Hambrock, Hiller, Schacht, RZ'13 first application LCSR
Bharucha, Straub, RZ '15 more systematic exploitation

- constrains vector-to-tensor form factor for fixed helicity
- importance for B->K*ll since zero of helicity amplitude largely determined by form factors

$$
H_{\perp}^{B \rightarrow V \ell \ell} \sim . . C_{7}^{\mathrm{eff}} T_{1}\left(q^{2}\right)+. . C_{9}^{\mathrm{eff}} V\left(q^{2}\right)+\text { long distance }
$$

In particular $P_{5}^{\prime} \sim \operatorname{Re}\left[H_{0} H_{\perp}\right]$ for instance

EOM in QFT \Leftrightarrow relations between correlation functions

- the following equation valid on $\left\langle K^{\star}\right| . . .|B\rangle$:

$$
i \partial^{\nu}\left(\bar{s} i \sigma_{\mu \nu}\left(\gamma_{5}\right) b\right)=-\left(m_{s} \pm m_{b}\right) \bar{s} \gamma_{\mu}\left(\gamma_{5}\right) b+i \partial_{\mu}\left(\bar{s}\left(\gamma_{5}\right) b\right)-2 \bar{s} i \overleftarrow{D}_{\mu}\left(\gamma_{5}\right) b
$$

EOM in QFT \Leftrightarrow relations between correlation functions

- the following equation valid on $\left\langle K^{*}\right| . .|B\rangle$:

where D_{i} 's are form factors of derivative operator:
$\left\langle K^{*}(p, \eta)\right| \bar{s}(2 i \overleftarrow{D})^{\mu}\left(1 \pm \gamma_{5}\right) b\left|\bar{B}\left(p_{B}\right)\right\rangle=P_{1}^{\mu} \mathcal{D}_{1}\left(q^{2}\right) \pm P_{2}^{\mu} \mathcal{D}_{2}\left(q^{2}\right) \pm P_{3}^{\mu} \mathcal{D}_{3}\left(q^{2}\right) \pm P_{P}^{\mu} \mathcal{D}_{P}\left(q^{2}\right)$

$$
T_{1}\left(q^{2}\right)+\left(m_{b}+m_{s}\right) \mathcal{V}_{1}\left(q^{2}\right)+\mathcal{D}_{1}\left(q^{2}\right)=0
$$

- Any form factor determination has to obey $\mathrm{EOM} \Rightarrow$ consistency check
- LCSR checked EOM at tree-level including O(m_{s})-corrections works upon use of EOM of vector meson distribution amplitudes
- lattice (future computations)
- Any form factor determination has to obey $\mathrm{EOM} \Rightarrow$ consistency check
- LCSR checked EOM at tree-level including $\mathrm{O}\left(\mathrm{m}_{\mathrm{s}}\right)$-corrections works upon use of EOM of vector meson distribution amplitudes
- lattice (future computations)
- Recall $\left.F_{i}=F_{i}\left\{m_{b}, \alpha_{s}, f^{\|}, f^{\perp}, ..\right\} \mid\left\{s_{0}, M_{\text {Borel }}\right\}\right]\left(q^{2}\right)$

One way to obey EOM set: $\mathrm{s}_{0}\left[\mathrm{~T}_{1}\right]=\mathrm{s}_{0}\left[\mathrm{~V}_{1}\right]=\mathrm{s}_{0}\left[\mathrm{D}_{1}\right]$

- eliminates the major source of uncertainty $\mathrm{T}_{1} / \mathrm{V}$-ratio [rest $\mathrm{O}(1 \%)$]
- of course this has to be questioned
- Any form factor determination has to obey $\mathrm{EOM} \Rightarrow$ consistency check
- LCSR checked EOM at tree-level including O(m_{s})-corrections works upon use of EOM of vector meson distribution amplitudes
- lattice (future computations)
- Recall $\left.F_{i}=F_{i}\left\{m_{b}, \alpha_{s}, f^{\|}, f^{\perp}, ..\right\} \mid\left\{s_{0}, M_{\text {Borel }}\right\}\right]\left(q^{2}\right)$

One way to obey EOM set: $\mathrm{s}_{0}\left[\mathrm{~T}_{1}\right]=\mathrm{s}_{0}\left[\mathrm{~V}_{1}\right]=\mathrm{s}_{0}\left[\mathrm{D}_{1}\right]$

- eliminates the major source of uncertainty $\mathrm{T}_{1} / \mathrm{V}$-ratio [rest $\mathrm{O}(1 \%)$]
- of course this has to be questioned
$\begin{array}{ccc}\text { - ... yet: } & T_{1}\left(q^{2}\right)+\left(m_{b}+m_{s}\right) \mathcal{V}_{1}\left(q^{2}\right)+\mathcal{D}_{1}\left(q^{2}\right)=0 \\ 0.294 & -0.272 & -0.022\end{array}$

$$
s_{0}^{T_{1}} \simeq 35 \mathrm{GeV}^{2} \quad s_{0}^{V}=s_{0}^{T_{1}} \pm 1 \mathrm{GeV}^{2} \quad s_{0}^{\mathcal{D}_{1}}=s_{0}^{T_{1}}\left({ }_{-6.5}^{+15}\right) \mathrm{GeV}^{2}
$$

$$
{ }_{-63}^{+55} \% \text {-shift in } \mathcal{D}_{1}
$$

- Hence if D_{1} is considered form factor then $\quad\left|s_{0}^{T_{1}}-s_{0}^{V}\right|<1 \mathrm{GeV}^{2}$
- Hence if D_{1} is considered form factor then $\left|s_{0}^{T_{1}}-s_{0}^{V}\right|<1 \mathrm{GeV}^{2}$
checked that twist and α_{s}-expansion is controlled (\Rightarrow more than a numerical accident)
- Hence if D_{1} is considered form factor then $\quad\left|s_{0}^{T_{1}}-s_{0}^{V}\right|<1 \mathrm{GeV}^{2}$

\downarrow
 checked that twist and α_{s}-expansion is controlled (\Rightarrow more than a numerical accident)

- Vector-tensor form factor ratios determined up to 4-6\%

note added

similar to large energy Charles et al ' 98 limit and SCET investigations Beneke Feldmann '00, Bauer et al'01
similarity: both use equation of motion difference: LCSR EOM in QCD - SCET EOM effective theory $1 / \mathrm{m}_{b}$
\Rightarrow ratios equal up to $1 / m_{b}$ to "SCET-ratios" in Beneke Feldmann '00

note added

- similar to large energy Charles et al ' 98 limit and SCET investigations Beneke Feldmann '00, Bauer et al'01......
similarity: both use equation of motion difference: LCSR EOM in QCD - SCET EOM effective theory $1 / \mathrm{m}_{b}$
- $\quad \Rightarrow$ ratios equal up to $1 / m_{b}$ to "SCET-ratios" in Beneke Feldmann '00
- numerical comparison LCSR vs heavy quark limes

LCSR ought to reproduce heavy quark value in heavy quark limes
phenomenological discussion
$B_{s} \rightarrow \boldsymbol{\phi}$ vs $B \rightarrow K^{*}$ tension $\left|V_{\mathrm{ub}}\right|$ from $B \rightarrow(\rho, \omega) I v$

phenomenological discussion

$B_{s} \rightarrow \phi$ vs $B \rightarrow K^{*}$ tension
 $\left|V_{u b}\right|$ from $B \rightarrow(\rho, \omega) I v$

LHCb used

- new predictions picture same: "we're off by factor of 2" shape ok - is there a problem with form factor normalisation? look at ratio $B_{s} \rightarrow \phi / B \rightarrow K^{*}$ where normalisation effects cancel \ldots

$B_{s} \rightarrow \boldsymbol{\phi}$ vs $B \rightarrow K^{*}$ tension

at $\mathrm{q}^{2}=0$ to photons

$$
R_{K^{*} \phi}^{(\gamma)} \equiv \frac{\mathrm{BR}\left(B^{0} \rightarrow K^{* 0} \gamma\right)}{\mathrm{BR}\left(B_{s} \rightarrow \phi \gamma\right)} \quad \begin{array}{ccc}
\text { Lyon, RZ'13 } & \text { LHCb'12 1202.6267 } \\
0.78(18) & 1.23(32)
\end{array}
$$

$B_{s} \rightarrow \phi$ vs $B \rightarrow K^{*}$ tension

- at $q^{2}=0$ to photons

$$
R_{K^{*} \phi}^{(\gamma)} \equiv \frac{\mathrm{BR}\left(B^{0} \rightarrow K^{* 0} \gamma\right)}{\mathrm{BR}\left(B_{s} \rightarrow \phi \gamma\right)} \quad \begin{array}{ccc}
\text { Lyon, RZ'13 } & \text { LHCb'12 } 1202.6267 \\
0.78(18) & 1.23(32)
\end{array}
$$

- statistically not significant but persists at higher q 2

$$
R_{K^{*} \phi}\left[q_{1}, q_{2}\right] \equiv \frac{d \mathrm{BR}\left(B^{0} \rightarrow K^{* 0} \ell^{+} \ell^{-}\right) /\left.d q^{2}\right|_{\left[q_{1}, q_{2}\right]}}{d \mathrm{BR}\left(B_{s} \rightarrow \phi \ell^{+} \ell^{-}\right) /\left.d q^{2}\right|_{\left[q_{1}, q_{2}\right]}}, \stackrel{\longmapsto}{ }
$$

$B_{s} \rightarrow \phi$ vs $B \rightarrow K^{*}$ tension

- at $q^{2}=0$ to photons

$$
R_{K^{*} \phi}^{(\gamma)} \equiv \frac{\mathrm{BR}\left(B^{0} \rightarrow K^{* 0} \gamma\right)}{\operatorname{BR}\left(B_{s} \rightarrow \phi \gamma\right)} \quad \begin{array}{ccc}
\text { Lyon, RZ'13 } & \text { LHCb'12 } 1202.6267 \tag{18}\\
0.78(18) & 1.23(32)
\end{array}
$$

- statistically not significant but persists at higher q 2
calls for test of form factors?

$\left|V_{u b}\right|$ from $B \rightarrow(\rho, \omega) I v$

involves vector form factors

note: B-factory $\left|V_{\text {ubl }}\right|$-values (could raise) if S-wave subtracted using ang-analysis

$\left|V_{u b}\right|$ from $B \rightarrow(\rho, \omega) I v$

\Rightarrow no sign of (serious) normalisation problems as questioned by $B_{s} \rightarrow \phi \mu \mu$
note: B-factory $\mathrm{IV}_{\text {ubl }} \mathrm{I}$-values (could raise) if S-wave subtracted using ang-analysis

I.C background effects (decaying vector meson)

II.c comment: vector meson - unstable particles

how to deal with unstable particles?

II.c comment: vector meson - unstable particles

how to deal with unstable particles?

- theory definition: pole on second sheet
a) derive Breit-Wigner otherwise b) little use

II.c comment: vector meson - unstable particles

how to deal with unstable particles?

- theory definition: pole on second sheet
a) derive Breit-Wigner otherwise b) little use
- signal PP-final state: $B \rightarrow \rho(\rightarrow \pi \pi) / v=$ signal $\ldots \pi$ in P-wave (S-wave etc ought to be subtract)

II.c comment: vector meson - unstable particles

how to deal with unstable particles?

- theory definition: pole on second sheet
a) derive Breit-Wigner otherwise b) little use
- signal PP-final state: $B \rightarrow \rho(\rightarrow \pi \pi) \mid v=$ signal $\ldots \pi n$ in P-wave (S-wave etc ought to be subtract)
- experiment: project out P-wave - ansatz P-wave amplitude ρ and $\rho,, \rho "$ maybe more background more data ansatz refined (LHCb is pushing standards)

how vector meson described in light-cone approach ?

- through light-cone DA - mainly f_{ρ} meson decay constant

the latter extracted from experiment - e.g. tau decays

how vector meson described in light-cone approach ?

- through light-cone DA - mainly f_{ρ} meson decay constant

the latter extracted from experiment - e.g. tau decays
treat $\tau \rightarrow(\pi m)_{P-w} / v$ same way in extraction of f_{ρ} as in $B \rightarrow \rho(\rightarrow \pi m) / v$

how vector meson described in light-cone approach ?

- through light-cone DA - mainly f_{ρ} meson decay constant

the latter extracted from experiment - e.g. tau decays
treat $\tau \rightarrow(\pi \pi)_{P-w}$ Iv same way in extraction of f_{ρ} as in $B \rightarrow \rho(\rightarrow \pi \pi) / v$
- lot of these experiments a bit old not same standards as today
-> important to do new measurements
$->$ PDG effort to check old input on tau decays e+e->p etc
For example PDG'06 vs PDG'12 lowers $\mathrm{f}_{\mathrm{k}^{*}}$ by 7% and therefore form factor by 7% !

treat vector meson the same way in every experiment

conclusions and summary

- q2-binning helps to disentangle SD from LD effects relevant tensions

conclusions and summary

- q2-binning helps to disentangle SD from LD effects relevant tensions
- equation of motion \& correlated errors for form factors help to predict angular observables like $\mathrm{P}_{5}{ }^{\prime}$ with higher precision

conclusions and summary

- q2-binning helps to disentangle SD from LD effects relevant tensions
- equation of motion \& correlated errors for form factors help to predict angular observables like $\mathrm{P}_{5}{ }^{\prime}$ with higher precision
- useful if PDG introduced standards for treating vector mesons as old experiments are input to compare theory to new experiments!

conclusions and summary

- q2-binning helps to disentangle SD from LD effects relevant tensions
- equation of motion \& correlated errors for form factors help to predict angular observables like $\mathrm{P}_{5}{ }^{\prime}$ with higher precision
- useful if PDG introduced standards for treating vector mesons as old experiments are input to compare theory to new experiments!

```
thanks for your attention
```


Backup

Why is it so small?

inclusive = sum of exclusive -

 is K^{*} special?- assuming $\mathrm{m}_{\mathrm{q}}=0$, one closed Dirac trace, leading twist-2, V-A

$$
\begin{aligned}
& \qquad \mathcal{A}\left(B \rightarrow V(p) \gamma(q)^{*}\right)=\epsilon(q)_{\mu} \operatorname{tr}\left[\eta \not p I^{\mu}\left(1-\gamma_{5}\right)\right] \sim I_{2} \\
& \text { Ansatz: } I^{\mu}=I_{0}^{\mu}+I_{1} \not p \gamma^{\mu}+I_{2} d \gamma^{\mu}+I_{3}^{\mu} \not p d
\end{aligned}
$$

one structure survives (like large energy limit ...)
$\Rightarrow \mathbf{H}=\mathbf{0}+\mathbf{O}\left(\mathbf{q}^{2}, \mathrm{~m}^{2}{ }^{2}, \mathrm{~m}_{\mathrm{s}}\right)$ - suppression systematic leading twist $\mathbf{2}$

Why is it so small?

inclusive = sum of exclusive -

 is K^{*} special?- assuming $\mathrm{m}_{\mathrm{q}}=0$, one closed Dirac trace, leading twist-2, $\mathrm{V}-\mathrm{A}$

$$
\begin{aligned}
& \qquad \mathcal{A}\left(B \rightarrow V(p) \gamma(q)^{*}\right)=\epsilon(q)_{\mu} \operatorname{tr}\left[\eta \nmid I^{\mu}\left(1-\gamma_{5}\right)\right] \sim I_{2} \\
& \text { Ansatz: } I^{\mu}=I_{0}^{\mu}+I_{1} \not p \gamma^{\mu}+I_{2} d \gamma^{\mu}+I_{3}^{\mu} \not p q
\end{aligned}
$$

one structure survives (like large energy limit ...)
$\Rightarrow \mathbf{H}=\mathbf{0}+\mathbf{O}\left(\mathbf{q}^{2}, \mathrm{~m}^{2}, \mathrm{~m}_{\mathrm{s}}\right)$ - suppression systematic leading twist $\mathbf{2}$
attempt to answer questions:
1.natural to use twist-3 to look for effects:

Why is it so small?

inclusive = sum of exclusive -

 is K^{*} special?- assuming $\mathrm{m}_{\mathrm{q}}=0$, one closed Dirac trace, leading twist-2, V-A

$$
\begin{aligned}
& \qquad \mathcal{A}\left(B \rightarrow V(p) \gamma(q)^{*}\right)=\epsilon(q)_{\mu} \operatorname{tr}\left[\nmid p p I^{\mu}\left(1-\gamma_{5}\right)\right] \sim I_{2} \\
& \text { nsatz: } I^{\mu}=I_{0}^{\mu}+I_{1} \not p \gamma^{\mu}+I_{2} q \gamma^{\mu}+I_{3}^{\mu} \not p q d \quad \begin{array}{l}
\text { Dimou, Lyon, RZ'12 } \\
\text { (appendix) }
\end{array}
\end{aligned}
$$

one structure survives (like large energy limit ...)
$\Rightarrow \mathbf{H}=\mathbf{0}+\mathbf{O}\left(\mathbf{q}^{2}, \mathrm{~m}^{2}{ }^{2}, \mathrm{~m}_{\mathrm{s}}\right)$ - suppression systematic leading twist $\mathbf{2}$
attempt to answer questions:
1.natural to use twist-3 to look for effects:

2.heavy use of light-cone dynamics - might well be different for higher resonances and might be a way to partially reconcile with inclusive decay!

II.C comment charm resonances in $\mathbf{B} \rightarrow \mathbf{K}{ }^{(*)}$ II

LHCb PRL 111 (2013)
pronounced ${ }^{\mathrm{JPC}}=1$ - charm resonance structure

- Using a fit to BES-II data $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadrons able to check status of "naive" factorisation at high q^{2} in $B \rightarrow K I I$

- Using a fit to BES-II data $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadrons able to check status of "naive" factorisation at high q^{2} in $B \rightarrow K I I$

hight of resonances in naive fac. by factor $\sim(-2.5)$ fits the data well

- Led us to speculate P_{5} '-anomaly in $\mathrm{B} \rightarrow \mathrm{K}{ }^{(*)} \|$ might be related to charm (since charm pronounced)

1) pronounced to $J / \Psi 2$) accommodated by photon penguin C_{10} not nec.

- Led us to speculate P_{5} '-anomaly in $\mathrm{B} \rightarrow \mathrm{K}{ }^{(*)} \|$ might be related to charm (since charm pronounced)

1) pronounced to $J / \Psi 2$) accommodated by photon penguin C_{10} not nec.

Straub's talk Moriond'15 (proceedings \& Wolfgang's talk) .

- effect same sign as in naive fac. in "-" versus "0" helicity
- my comment: that's what $B \rightarrow J / \Psi K^{*}$ experimental angular analysis predicts for $J / \Psi, \Psi(2 S)$-contributions

ρ vs $\pi \pi$-distribution amplitude

- using 2-pion DA (def e.g. Polyakov'98) to describe $B(\rightarrow \pi \pi)$ Iv requires determination of the 2-pion DA

ρ vs $\pi \pi$-distribution amplitude

- using 2-pion DA (def e.g. Polyakov'98) to describe $B(\rightarrow \pi \pi)$ Iv requires determination of the 2-pion DA
- for $0^{\text {th }}$ Gegenbauer moment of vector 2-pion DA = pion form factor

ρ vs $\pi \pi$-distribution amplitude

- using 2-pion DA (def e.g. Polyakov'98) to describe $B(\rightarrow \pi \pi)$ Iv requires determination of the 2-pion DA
- for $0^{\text {th }}$ Gegenbauer moment of vector 2-pion DA = pion form factor
- yet higher moments or tensor 2-pion DA no experimental info available

ρ vs $\pi \pi$-distribution amplitude

- using 2-pion DA (def e.g. Polyakov'98) to describe $B(\rightarrow \pi \pi) I v$ requires determination of the 2-pion DA
- for $0^{\text {th }}$ Gegenbauer moment of vector 2-pion $D A=$ pion form factor
- yet higher moments or tensor 2-pion DA no experimental info available
- ρ-DA uncertainties in (other) parameters take care of background effects in error budget

ρ vs $\pi \pi$-distribution amplitude

- using 2-pion DA (def e.g. Polyakov'98) to describe $B(\rightarrow \pi \pi)$ Iv requires determination of the 2-pion DA
- for $0^{\text {th }}$ Gegenbauer moment of vector 2-pion $D A=$ pion form factor
- yet higher moments or tensor 2-pion DA no experimental info available
- ρ-DA uncertainties in (other) parameters take care of background effects in error budget
around ρ-meson peak do not see pragmatic advantage in near future of using 2-pion DA

