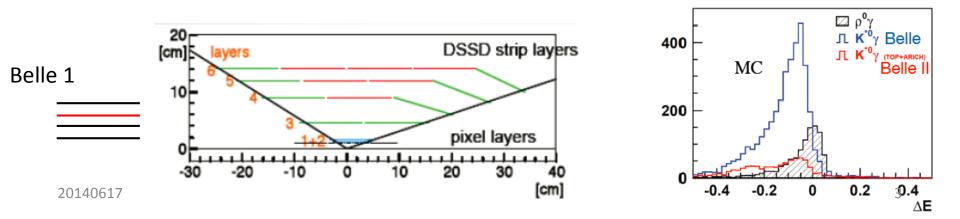


Belle II Prospects for EW Penguin Decays (Except R_K)

Akimasa Ishikawa (Tohoku University)


Belle II Schedule

- Beam commissioning
 - starts in Jan 2016 with BEAST II detector without Belle II detector
 - With BEAST II with Belle II but without VTX detector on Y(1-3S) in May 2017
- Data taking with full Belle II on Y(4S) in Oct 2018
- Accumulate 50ab⁻¹ in 2024

Belle II Detector Improvements

- Particle Identification
 - Kaon ID with TOP and ARICH is much better than Belle
 - ~10 times smaller $B \rightarrow K^* \gamma$ background to $B \rightarrow \rho \gamma$ in the acceptane
 - Low momentum muon ID can be identified by TOP and ARICH
 - Electron ID also improve with TOP and ARICH?
- Ks for Time dependent analysis
 - Radius of 2^{nd} Outer most VTX detector **2** times larger 6cm \rightarrow 11.5cm
 - For Ks vertexing, 2 VTX hits needed.
 - ~30% more $B \rightarrow Ks\pi^0\gamma$ for time dependent CPV

Belle II

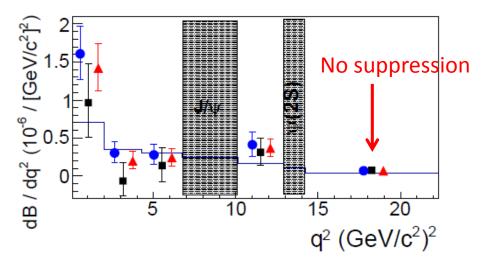
- What only Belle II can do, or Belle II can do more than LHCb are
 - Ks and π^0 reconstructions
 - Isospin analysis
 - $A_{UD}(B \rightarrow K\pi\pi\gamma)$ with π^0
 - Inclusive analyses
 - В→Хsγ
 - B→Xdγ
 - B→Xsl⁺l⁻
 - Electron/Tau/Neutrino modes (tau and neutrino by B recon tag)
 - Lepton Universality, LFV
 - $B_d \rightarrow \tau \tau$, $Bs \rightarrow \tau \tau$
 - $B \rightarrow K\mu\mu/B \rightarrow Kee/B \rightarrow K\tau\tau/B \rightarrow K\nu\nu$
 - Photonic modes
 - $B_d \rightarrow \gamma \gamma$, $Bs \rightarrow \gamma \gamma$
 - Ks vertexing and Flavor tagging
 - TCPV in $B \rightarrow Ks\pi^0 \gamma$ and $B \rightarrow \rho^0 \gamma$

Contents

- 1. b \rightarrow sll and B \rightarrow K^(*)vv
- 2. Radiative Decays

b→sl+l-

- LHCb will do almost everything in exclusive all charged final states with dimuon
 - $B \rightarrow K^{*0}(K^{+}\pi^{-})\mu\mu$
 - $B \rightarrow K^+ \mu \mu$
 - We can not have comparable sensitivities for these measurements.
 - But anyway we will look into these.
- Belle II targets should be other important decay modes/observables


$BF(B \rightarrow XsII)$

- Inclusive $b \rightarrow$ sll is theoretically clean
- BF(B \rightarrow XsII) sensitive to C₉ and C₁₀
 - Babar published with full data ~400fb-1
 - If C₉ is smaller, high q² region should be suppressed but it's not. Babar: $BR(B \rightarrow X_{s}\ell\ell) =$

 $(0.57 (+0.16 - 0.15)_{stat}(+0.03 - 0.02)_{syst}) 10^{-6}$

 $a^2 > 14.2 GeV^2$

 2σ higher than SM

Huber, Hurth, Lunghi

Only 6% theo uncertainty in low q². Low-q² (1GeV² < q² < 6GeV²) BR($B \rightarrow X_{s}ee$) = (1.67 ± 0.10) 10⁻⁶ BR($B \rightarrow X_{s}\mu\mu$) = (1.62 ± 0.09) 10⁻⁶ High-q², Theory: q² > 14.4GeV², BR($B \rightarrow X_{s}ee$) = (0.220 ± 0.070) 10⁻⁶ BR($B \rightarrow X_{s}\mu\mu$) = (0.253 ± 0.070) 10⁻⁶

Uncertainties at Belle and Belle II

Unofficial numbers Please not refer in your paper

 M_{Xs} cut = 2.0GeV

Stat + syst	711fb ⁻¹	5ab ⁻¹	50ab ⁻¹
B(B→XsI+I-)	8% + 9%	3% + 7%	
N(B→XsI+I-) events	400events	2800events	28000events
B(B→XsI+I-) in 1 <q<sup>2<6GeV²</q<sup>	12% + 15%	5% + 9%	
B(B→XsI+I-) in q ² >14.4GeV ²	10% + 15%	4% + 8%	

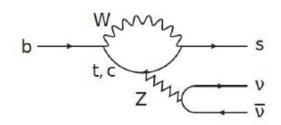
- Systematic dominant even at 5ab⁻¹ with the same analysis
 - Next page
- High q² region is easier to reduce syst errors since efficiency in q² VS cos(theta)is almost flat and high M_{xs} events are suppressed.
- With 50ab⁻¹,
 - Reduce systematic error
 - try higher M_{Xs} cut (uncertainty from shape function reduced)
 - try fully inclusive with hadronic tagging?

Babar full data

Bin	Range	$B \to X_s \ell^+ \ell^-$
q_{0}^{2}	$1.0 < q^2 < 6.0$	$1.60^{+0.41}_{-0.39}{}^{+0.17}_{-0.13}\pm0.18$

PRD 72, 092005 (2005)

Breakdown of Syst Error

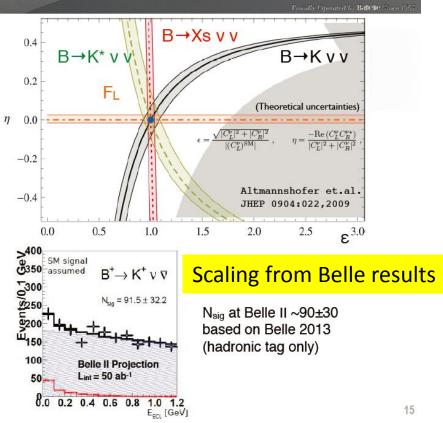

- Dominated by
 - BG shape
 - Reducible
 - Exclusive Fraction
 - LHCb already gives much better BF
 - Hadronization
 - reducible

<u>PRD 7</u>	2, 0920	<u>05 (2005)</u>
Source	$X_s \; e^+ e^-$	$X_s \: \mu^+ \mu^-$
Signal shape	± 1.4	± 0.5
BG shape	± 7.8	± 4.7
Peaking background statistics	± 0.9	± 0.6
Peaking background PID error	< 0.1	± 0.5
Peaking background shape	± 4.3	± 2.1
Cross-feed events	± 4.1	± 2.2
Signal yield total	± 9.9	± 5.7
Tracking efficiency	± 3.5	± 3.5
Lepton identification efficiency	± 4.1	± 5.9
Kaon identification efficiency	± 0.8	± 0.8
π^{\pm} identification efficiency	± 0.6	± 0.5
$K_{\rm S}^0$ efficiency	± 0.7	± 0.8
π^0 efficiency	± 0.3	± 0.3
\mathcal{R} requirement efficiency	± 5.4	
Fermi motion model	$^{+6.5}_{-2.4}$	$^{+6.1}_{-2.3}$
${\cal B}(B o K \ell^+ \ell^-)$	± 9.9	± 10.5
${\cal B}(B o K^* \ell^+ \ell^-)$	± 7.0	± 7.8
K^*-X_s transition	± 4.5	± 4.7
Hadronization	± 8.5	± 8.2
Missing modes	± 4.5	± 4.4
Monte Carlo statistics	± 1.6	± 1.5
Efficiency total	$^{+19.0}_{-18.1}$	$^{+19.7}_{-18.9}$
$B\bar{B}$ counting	± 0.5	± 0.5
Total	$^{+21.5}_{-20.6}$	$^{+20.5}_{-19.7}$

Jared Yamaoka

Pacific Northwest

Prospective: Di-Neutrino



- BF(B⁺→K⁺ v v)=(4.4±0.7)10⁻⁶ [Buchalla, NPPS 209, 137]
- $BF(B^+ \rightarrow K^{*+} \vee \nu) = (6.8^{+1.0}_{-1.1})10^{-6}$ [Altmannshofer, JHEP 0904, 022]

Ultimate test of Belle II

Further improvements to consider: tag efficiency, calorimeter timing, better K_L ID

J. Yamaoka B2TiP 28.04.2015

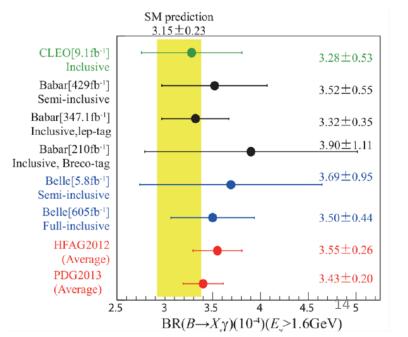
Others not done at Belle (No sensitivity estimated)

- $B \rightarrow K^* ee at low q^2$
 - Recently LHCb published very interesting result.
 - At Belle we have ~10 events for 0.14 < Mee < 1GeV
 - We can remove Mee<0.14GeV cut
- B→K^(*)ττ
 - will be searched.
 - Even with improved tagging efficiency, observation is not easy
 - BF < 10^{-6} , ~ 10^{11} B mesons, tagging efficiency <1%
- Time dependent angular analysis in $B \rightarrow K^{*0} II$ ($K^{*0} \rightarrow Ks\pi^{0}$)
- LFV modes, $B \rightarrow K \mu \tau$

If lepton flavor is violated, $B \rightarrow D\tau v$, R_{κ} , $B \rightarrow K\mu\tau$ and $B \rightarrow Ke\mu$

G. L. Glashow

Radiative Decays

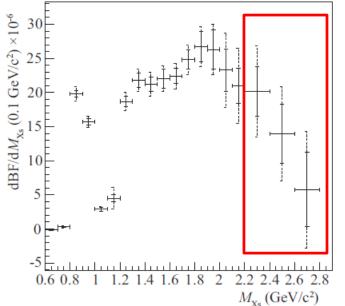

Inclusive $b \rightarrow s \gamma$

- Three reconstruction methods
 - Each method has own pros and cons.
 - Access to different observables
 - Ex. $A_{CP}(b \rightarrow s\gamma) \vee S A_{CP}(b \rightarrow s, d\gamma)$

Recon method	Flavor	Isospin	b→dγ	observables
Semi-inclusive Xs + γ	yes	yes	no	BF, dBF/dE, $A_{CP}(b \rightarrow s\gamma)$, A_{I} , $\Delta A_{CP}(b \rightarrow s\gamma)$
Fully inclusive γ (with lepton tag)	No (yes, mixing dilution)	No (no)	Yes (Yes)	BF, dBF/dE (BF, dBF/dE, A _{CP} (b→s,dγ))
Fully inclusive γ with B recon tag	Yes, mixing dilution	yes	yes	BF, dBF/dE, $A_{CP}(b \rightarrow s, d\gamma)$, A_{I} , $\Delta A_{CP}(b \rightarrow s, d\gamma)$

$\mathsf{BF}(\mathsf{b} \rightarrow \mathsf{s}\gamma)$

- Constrain on |C₇|
- SM prediction precise (in Belle era)
 - (3.36 \pm 0.23) \times 10⁻⁴ Misiak et al.
- Precision of current WA comparable to the prediction
 - $(3.55 \pm 0.26) \times 10^{-4}$
 - (3.40 ± 0.21) × 10⁻⁴
 - Error dominated by systematic ones



Breakdown of the Systematic Error

Semi-Inclusive

- Largest source is fragmentation model
 - in high M_{xs} region
 - Determined from data
 - can be reduced by additional data set
- The second is Mbc PDF
 - in high M_{xs} region
 - Dominated by uncertainty in BBbar background.
 - Which is determined by data driven method so additional data set helps to reduce the error but not so much
 - To be 4%?
- Precision to be~7%

Systematic Uncertainties(%)		
B counting	1.4	
Detector Response	3.0	
Background Rejection	3.4 ^{Inc}	
M_{bc} PDF	5.1	
Fragmentation model	6.7	
Missing mode	1.6	
Total	9.3	

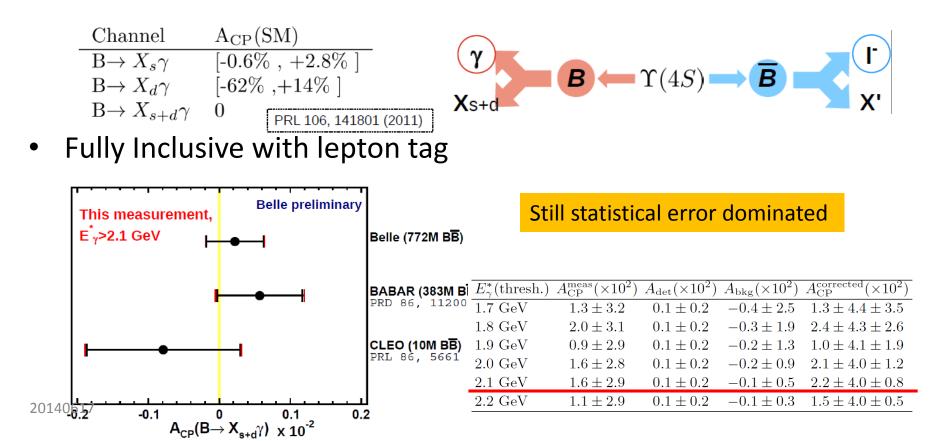
15

Breakdown of the Systematic Error

Fully Inclusive

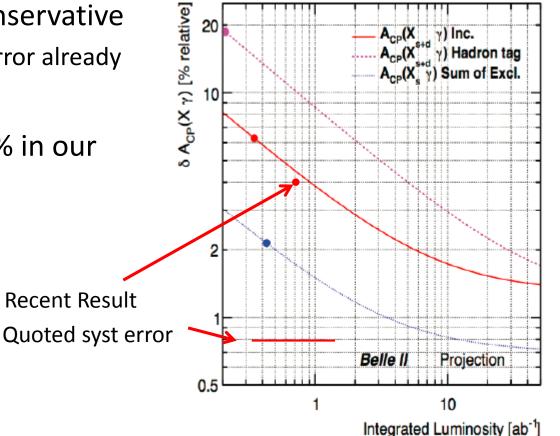
- Largest source is continuum subtraction

 Scaled by luminosity

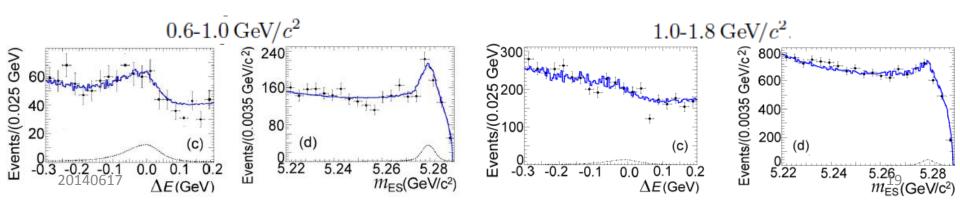

 The second is other B backgrounds than π⁰X and ηX

 in low E_γ region
 - To reduce the systematic error, need to understand other B background
 - Hard to reduce
 - Down to ~5%?
 - Will dominate the total error
- Precision to be ~6%
- A theorists suggested to use only high Eγ region and rely on theory to extrapolate to Eγ=1.6GeV.
 - If 1.9GeV is OK, already 5% syst error.

	В	$F(B \rightarrow X)$	$(s_s \gamma) (10^{-1})$	4)
$E^B_{\gamma-\text{Low}}$ (GeV)	1.70	1.80	1.90	2.00
Value	3.45	3.36	3.21	3.02
\pm statistical	0.15	0.13	0.11	0.10
±systematic	0.40	0.25	0.16	0.11
1. Continuum	0.26	0.16	0.10	0.07
2. Selection	0.15	0.12	0.10	0.08
3. π^0/η	0.07	0.05	0.04	0.02
4. Other B	0.25	0.14	0.06	0.02
5. Beam bkgd.	0.03	0.02	0.02	0.01
6. Unfolding	0.01	0.01	0.02	0.02
7. Model	0.01	0.01	0.00	0.01
8. Resolution	0.05	0.03	0.01	0.00
9. γ Detection	0.03	0.02	0.00	0.00
10. $B \rightarrow X_d \gamma$	0.01	0.01	0.01	0.01
11. Boost	0.01	0.01	0.02	0.02
Syst	12%	7%	5%	3.5%


$\mathsf{A}_{\mathsf{CP}}(\mathsf{B} \rightarrow \mathsf{X}_{\mathsf{s},\mathsf{d}} \gamma)$

- Theoretical prediction is very precise thanks to unitarily.
 - If deviated from 0, clear new physics signal
 - Precision of $A_{CP}(B \rightarrow Xs\gamma)$ is already comparable to theory

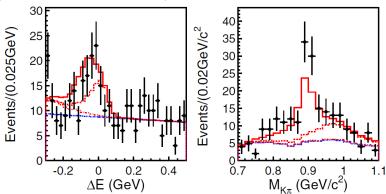

Prospect of $A_{CP}(B \rightarrow X_{s,d}\gamma)$

- Systematic error assumed in this figure is somewhat conservative
 - We quoted 0.8% syst error already
- Total error around 0.5% in our scope

$\mathsf{BF}(\mathsf{B} \rightarrow \mathsf{X}_{\mathsf{d}} \gamma)$

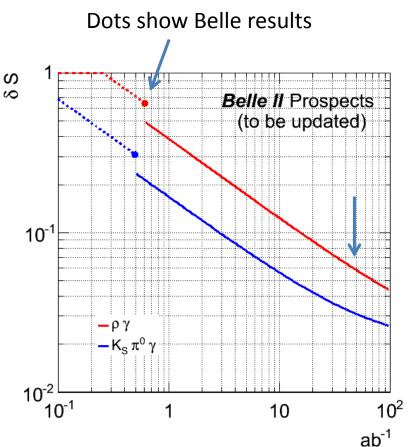
- Semi-Inclusive approach to reduce $B \rightarrow Xs\gamma$ backgrounds
- Naïve estimation from the Babar measurement gives $B \rightarrow X_d \gamma$ can be observed (20% stat error) with a few /ab with $M_{Xd} <$ 1.8GeV cut.
- Additional data set could be used
 - to extend M_{xd} region to reduce the extrapolation uncertainty to E γ >1.6GeV.

Photon Polarization in b \rightarrow s,d γ


- In the SM, photon is polarized left handed predominantly
 - $O(m_{s,d}/m_b)$ right handed component.
 - Charm loop contribution???
- If new physics has right handed current, right handed polarization appears
- 4 methods to measure
 - − TCPV in $B \rightarrow f_{CP} \gamma$
 - − A_{UD} in $B \rightarrow K \pi \pi \gamma$
 - Modes with pi0 is 4.7 times larger A_{UD} for $K_1(1400)$
 - Photon conversion in $B \rightarrow K^* \gamma$
 - − Very low q^2 in $B \rightarrow K^*e+e-$

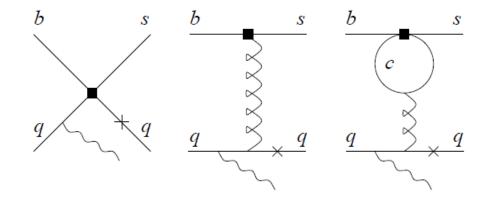
Not measured yet even at Belle !

Time Dependent CPV


• Possible improvement

- common
 - Improved flavor tagging thanks to better PID : 10%?
 - Background suppression with Neural Net and multi dimensional fit to extract signal : 20%?
 - (better photon resolution thanks to smaller material in front of the ECL)
- B→Ksπ⁰γ
 - 30% more yield thanks to larger VTX detector
- $B \rightarrow \rho^0 \gamma$
 - 10 times smaller K^{*0} background : 30% improved stat power
 - (better proper time resolution)

Prospects of δS


- Assuming 50ab⁻¹ integrated lumi and 2% syst error
 - δS($ργ^0$) ~ 0.06
 - $\delta S(Ks\pi^0\gamma) \simeq 0.03$
- For $Ks\pi^0\gamma$, stat and syst errors are comparable
- For ργ⁰, we need at least 4 times larger integrated luminosity (or more improved analysis) to hit syst limit

Isospin Violation

- New physics contribution changes the SM isospin breaking
 - SUSY case, the amplitude is destructive to the SM ightarrow larger Isospin V

$$\Delta_{0-} \equiv \frac{\Gamma(\bar{B}^0 \to \bar{K}^{*0} \gamma) - \Gamma(B^- \to K^{*-} \gamma)}{\Gamma(\bar{B}^0 \to \bar{K}^{*0} \gamma) + \Gamma(B^- \to K^{*-} \gamma)} \qquad \qquad \Delta_{\rho} = \frac{\Gamma(B^- \to \rho^- \gamma)}{2\Gamma(\bar{B}^0 \to \rho^0 \gamma)} - 1$$

Isospin Violation in $B \rightarrow K^* \gamma$

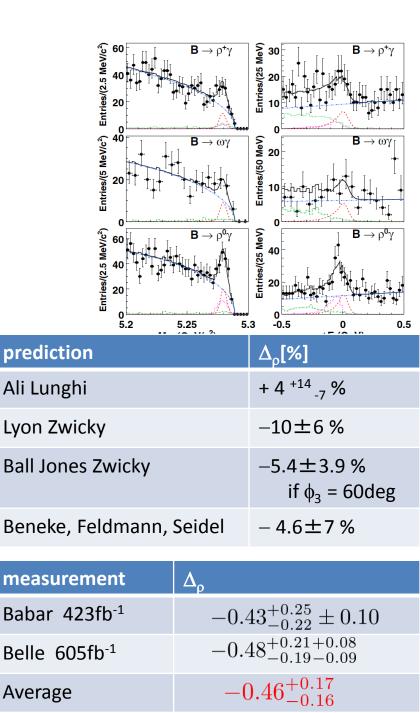
• Consistent with SM predictions : O(5%)

20141030

• Systematic error dominated even at B-factories with 347fb⁻¹.

$$\Delta_{0+} = \frac{(\tau_{B^+}/\tau_{B^0})\mathcal{B}(B^0 \to K^{*0}\gamma) - \mathcal{B}(B^+ \to K^{*+}\gamma)}{(\tau_{B^+}/\tau_{B^0})\mathcal{B}(B^0 \to K^{*0}\gamma) + \mathcal{B}(B^+ \to K^{*+}\gamma)}$$

• The dominant systematic error in exp is B⁺/B⁰ production ratio.


Prediction		Δ_{0+}	
Beneke, Feldmann, Seidel		$(0.28/T_1^{K^*}(0)) (5.8^{+3.3}_{-2.9}) \times 10^{-2}$	
Kagan, Neubert		$(8.0^{+2.1}_{-3.2})\% imes \frac{0.3}{T_1^{B \to K^*}}$	
Ball, Jones, Zwicky		$(5.4 \pm 1.4)\%$	
Matsumori, Sanda, Keum		+2.7±0.8	
measurement	Δ ₀₊		
Babar 347fb ⁻¹	$0.066 \pm 0.021 \pm 0.022$		
Belle 78fb ⁻¹	$+0.034 \pm 0.044(\text{stat}) \pm 0.026(\text{syst}) \pm 0.025(f_+/f_0)$		
WA	0.052 ± 0.026		

Isospin Violation in $B \rightarrow \rho \gamma$

• Δ_{ρ} Isospin Violation large than prediction??

$$\varDelta_{\rho} = \frac{\Gamma(B^- \to \rho^- \gamma)}{2\Gamma(\overline{B}{}^0 \to \rho^0 \gamma)} - 1$$

- ~2.5 σ deviation from theory
- The systematic error in exp is dominated by
 - Signal/BG shapes in fitting
 - Peaking BG
- Which can be reduced at Belle II
- Systematic error associated with B⁺/B⁰ production ratio f₊₋/f₀₀ will dominate the systematic error

Prospects of $\delta \Delta_{\rho}$

- If the central value -0.46 is not changed, we can observe isospin violation in B→ργ with ~1.4ab⁻¹
 - The exp error is ~0.09.
 - Theoretical prediction is -5±5%→
 new physics signal with ~3ab⁻¹.
 - At early stage, we can say something??

- $\int_{\infty}^{1} \frac{1}{10^{-1}} \frac{1}$
- Assuming 50ab⁻¹ integrated lumi and 2.0% syst error
 - $\delta \Delta_{
 ho} \simeq 0.024$

ed lumi	prediction	Δ _ρ [%]
	Ali Lunghi	+ 4 ⁺¹⁴ ₋₇ %
	Lyon Zwicky	$-10\pm6\%$
	Ball Jones Zwicky	$-5.4 \pm 3.9 \%$ if $\phi_3 = 60 deg$
B2TiP Workshop	Beneke, Feldmann, Seidel	-4.6±7%

Others

• ΔA_{CP} in B $\rightarrow Xs, d \gamma$ M. Benzke, S. J. Lee, M. Neubert and G. Paz, PRL 106, 141801 (2011) – Belle II can measure ~0.6% accuracy

$$\Delta \mathcal{A}_{X_s\gamma} \equiv \mathcal{A}_{X_s^-\gamma} - \mathcal{A}_{X_s^0\gamma} \approx 4\pi^2 \alpha_s \, \frac{\tilde{\Lambda}_{78}}{m_b} \, \mathrm{Im} \, \frac{C_{8g}}{C_{7\gamma}}$$

$$17 \, \mathrm{MeV} < \tilde{\Lambda}_{78} < 190 \, \mathrm{MeV}$$

- A_{UD} in $B \rightarrow K \pi \pi \gamma$
 - LHCb reported already
 - Modes involving π^0 gives larger sensitivity to polarization

Summary

- Belle II start data taking at Y(4S) in Oct 2018
 - Before that Y(1-3S) for quarkinum/dark photon physics
- Very exciting program for EW Penguin physics.
 - B→XsII
 - − B→Xsγ, Xdγ
 - $B \rightarrow Kvv$

- Before that we will finalize some Belle results
 - Stay tuned.