Global fits to $bs\ell\ell$ data

Nazila Mahmoudi

Lyon University & CERN TH

In collaboration with T. Hurth and S. Neshatpour

Rare B decays in 2015 - experiment and theory Higgs Centre for Theoretical Physics, Edinburgh 11-13 May 2015

Inclusive decays

• $B \to X_s \gamma$

Improved theory calculations (Misiak et al. 1503.01789) Excellent agreement with the measurements

• $B \to X_s \ell^+ \ell^-$

Still waiting for the final words from Belle and Babar! High expectation from Belle II!

Exclusive decays

- $B \to K^* \gamma$
- First measurements of $B_s o \mu^+ \mu^-$
- Angular distributions of B → K^{*}µ⁺µ⁻ → large variety of experimentally accessible observables

• Also:
$$B o K \mu^+ \mu^-$$
 and $B_s o \phi \mu^+ \mu^-$

Issue of hadronic uncertainties in exclusive modes

Differential decay distribution:

$$\frac{d^4\Gamma}{dq^2\,d\cos\theta_\ell\,d\cos\theta_V\,d\phi} = \frac{9}{32\pi}J(q^2,\theta_\ell,\theta_V,\phi)$$

 $J(q^2,\theta_\ell,\theta_V,\phi) = \sum_i J_i(q^2) f_i(\theta_\ell,\theta_V,\phi)$

 \searrow angular coefficients J_{1-9}

 \searrow functions of the spin amplitudes A_0 , A_{\parallel} , A_{\perp} , A_t , and A_s Spin amplitudes: functions of Wilson coefficients and form factors

Standard Observables:

Dilepton invariant mass spectrum:
$$\frac{d\Gamma}{dq^2} = \frac{3}{4} \left(J_1 - \frac{J_2}{3} \right)$$

Forward backward asymmetry:
$$A_{\rm FB}(q^2) \equiv \left[\int_{-1}^0 - \int_0^1 \right] d\cos\theta_l \frac{d^2\Gamma}{dq^2 d\cos\theta_l} \Big/ \frac{d\Gamma}{dq^2} = \frac{3}{8} J_6 \Big/ \frac{d\Gamma}{dq^2}$$

Forward backward asymmetry zero-crossing:
$$q_0^2 \simeq -2m_b m_B \frac{C_9^{\rm eff}(q_0^2)}{C_7} + O(\alpha_s, \Lambda/m_b)$$

Polarization fraction:
$$F_L(q^2) = \frac{|A_0|^2}{|A_0|^2 + |A_{\perp}|^2 + |A_{\perp}|^2},$$

Nazila Mahmoudi

$B \rightarrow V \mu^+ \mu^-$ observables

Optimised observables: form factor uncertainties cancel at leading order

$$\langle P_1 \rangle_{\rm bin} = \frac{1}{2} \frac{\int_{\rm bin} dq^2 [J_3 + \bar{J}_3]}{\int_{\rm bin} dq^2 [J_{2s} + \bar{J}_{2s}]} \qquad \langle P_2 \rangle_{\rm bin} = \frac{1}{8} \frac{\int_{\rm bin} dq^2 [J_{6s} + \bar{J}_{6s}]}{\int_{\rm bin} dq^2 [J_{2s} + \bar{J}_{2s}]} \\ \langle P'_4 \rangle_{\rm bin} = \frac{1}{N'_{\rm bin}} \int_{\rm bin} dq^2 [J_4 + \bar{J}_4] \qquad \langle P'_5 \rangle_{\rm bin} = \frac{1}{2N'_{\rm bin}} \int_{\rm bin} dq^2 [J_5 + \bar{J}_5] \\ \langle P'_6 \rangle_{\rm bin} = \frac{-1}{2N'_{\rm bin}} \int_{\rm bin} dq^2 [J_7 + \bar{J}_7] \qquad \langle P'_8 \rangle_{\rm bin} = \frac{-1}{N'_{\rm bin}} \int_{\rm bin} dq^2 [J_8 + \bar{J}_8]$$

with

$$\mathcal{N}_{
m bin}' = \sqrt{-\int_{
m bin} dq^2 [J_{2s} + ar{J}_{2s}] \int_{
m bin} dq^2 [J_{2c} + ar{J}_{2c}]}$$

+ CP violating clean observables and other combinations

U. Egede et al., JHEP 0811 (2008) 032, JHEP 1010 (2010) 056 J. Matias et al., JHEP 1204 (2012) 104 S. Descotes-Genon et al., JHEP 1305 (2013) 137

Or alternatively:

$$S_i = \frac{J_{i(s,c)} + \bar{J}_{i(s,c)}}{\frac{d\Gamma}{dq^2} + \frac{d\bar{\Gamma}}{dq^2}}$$

W. Altmannshofer, P. Ball, A. Bharucha, A.J. Buras, D.M. Straub, M. Wick, JHEP 0901 (2009) 019

Nazila Mahmoudi

Rare B decays in 2015 - Edinburgh - 13 May 2015

The LHCb anomalies

3 main LHCb anomalies:

- P'_5
- *R*_K
- BR($B_s \rightarrow \phi \mu^+ \mu^-$)

Possible explanations:

- Statistical fluctuations
- Theoretical issues
- New Physics!

Global analysis of the latest LHCb data

Relevant Operators:

$$\mathcal{O}_7$$
, \mathcal{O}_8 , $\mathcal{O}_{9\mu,e}^{(')}$, $\mathcal{O}_{10\mu,e}^{(')}$ and $\mathcal{O}_{S-P} \propto (\bar{s}P_R b)(\bar{\mu}P_L \mu) \equiv \mathcal{O}_0^{\prime}$

 NP manifests itself in the shifts of the individual coefficients with respect to the SM values:

$$C_i(\mu) = C_i^{\rm SM}(\mu) + \delta C_i$$

- ightarrow Scans over the values of δC_i
- \rightarrow Calculation of flavour observables
- \rightarrow Comparison with experimental results
- \rightarrow Constraints on the Wilson coefficients C_i

Evaluations uncertainties and correlations:

- Experimental errors and correlations
 - 3 fb^{-1} LHCb data for $B
 ightarrow {\cal K}^{*0} \mu^+ \mu^-$: provided in LHCb-CONF-2015-002
- Theoretical uncertainties and correlations
 - study of more than 100 observables (at a later stage, selection of the relevant observables for each fit)
 - Monte Carlo analysis
 - variation of the "standard" input parameters: masses, scales, CKM, ...
 - for $B_s \rightarrow \phi \mu^+ \mu^-$, mixing effects taken into account
 - · decay constants taken from the latest lattice results
 - use for the $B_{(s)} \rightarrow V$ form factors of the lattice+LCSR combinations from 1503.05534, including correlations (Cholesky decomposition method)
 - use for the $B \to K$ form factors of the lattice+LCSR combinations from 1411.3161, including correlations
 - two approaches for the exclusive decays: soft form factors, full form factors
 - two sets of hypotheses for the uncertainties associated to the factorisable and non-factorisable power corrections

 \Rightarrow Computation of a (theory + exp) correlation matrix

For the exclusive semi-leptonic decays, two approaches and two evaluations of the uncertainties for each decay.

At low q^2 :

• Soft form factor approach

Uncertainties of the factorisable and non-factorisable corrections parametrised as

$$A_k
ightarrow A_k \left(1 + \mathsf{a}_k \exp(i\phi_k) + rac{q^2}{6 \ {
m GeV}^2} b_k \exp(i\theta_k)
ight)$$

where A_k are the helicity amplitudes.

$$a_k$$
 in $[-10\%, +10\%]$ or $[-20\%, +20\%]$ ϕ_k, θ_k in $[-\pi, +\pi]$ b_k in $[-25\%, +25\%]$ or $[-50\%, +50\%]$

• Full form factor approach

Uncertainties of the non-factorisable power corrections only parametrised in a similar way:

$$\begin{array}{ll} \textbf{a}_k \text{ in } [-5\%,+5\%] \text{ or } [-10\%,+10\%] & \phi_k,\theta_k \text{ in } [-\pi,+\pi] \\ \textbf{b}_k \text{ in } [-10\%,+10\%] \text{ or } [-25\%,+25\%] \end{array}$$

At high q^2 , uncertainties parametrised as

$$egin{aligned} & A_k o A_k ig(1+a_k \exp(i\phi_k)ig) \ & a_k \ & ext{in } [-10\%,+10\%] \ & ext{or } [-20\%,+20\%] \ & \phi_k \ & ext{in } [-\pi,+\pi] \end{aligned}$$

Global fits of the observables by minimization of

$$\chi^2 = \left(\vec{O}^{\texttt{th}} - \vec{O}^{\texttt{exp}}\right) \cdot \left(\Sigma_{\texttt{th}} + \Sigma_{\texttt{exp}}\right)^{-1} \cdot \left(\vec{O}^{\texttt{th}} - \vec{O}^{\texttt{exp}}\right)$$

 $(\Sigma_{\tt th}+\Sigma_{\tt exp})^{-1}$ is the inverse covariance matrix.

58 observables relevant for leptonic and semileptonic decays:

- $BR(B \rightarrow X_s \gamma)$
- $BR(B \rightarrow X_d \gamma)$
- $\Delta_0(B \to K^*\gamma)$
- $\mathsf{BR}^{\mathsf{low}}(B \to X_s \mu^+ \mu^-)$
- $\mathsf{BR}^{\mathsf{high}}(B \to X_s \mu^+ \mu^-)$
- $\mathsf{BR}^{\mathsf{low}}(B \to X_s e^+ e^-)$
- $\mathsf{BR}^{\mathsf{high}}(B \to X_s e^+ e^-)$
- BR($B_s \rightarrow \mu^+ \mu^-$)
- BR($B_d \rightarrow \mu^+ \mu^-$)
- BR($B \rightarrow K^{*+} \mu^+ \mu^-$)

- BR($B \rightarrow K^0 \mu^+ \mu^-$)
- BR($B
 ightarrow K^+ \mu^+ \mu^-$)
- BR($B \rightarrow K^* e^+ e^-$)
- R_K
- $B \rightarrow K^{*0} \mu^+ \mu^-$: F_L , A_{FB} , S_3 , S_4 , S_5 in five low q^2 and two high q^2 bins
- $B_s \rightarrow \phi \mu^+ \mu^-$: BR, F_L in three low q^2 and two high q^2 bins

Statistical approaches:

- $\Delta \chi^2 = \chi^2 \chi^2_{\min}$ method
 - $\textbf{O} \ \ \text{Determination of the minimum of } \chi^2 \rightarrow \text{best fit point}$
 - **②** Computation for each point of the scan of the difference of χ^2 with the best fit point
 - **③** Find the $1 2\sigma$ regions corresponding to the number of d.o.f.

Interpretation: considering the best fit point gives the "real" description, which variations of the parameters are allowed \rightarrow *relative* global fit

- \bullet Absolute $\chi^{\rm 2}$ method

 - **(a)** Find the $1 2\sigma$ regions corresponding to N d.o.f. where $N = (N_o \text{ observables} n_v \text{ variables})$
 - If an observable is relatively insensitive to the variation of the Wilson coefficients, remove it from the fit

Interpretation: global fit assessing if each point is globally in agreement with all the measurements

 \rightarrow Using soft form factors

with 10% power correction errors: $\Delta \chi^2$ method

with 20% power correction errors: $\Delta \chi^2$ method

Fit results for two operators: $\{C_9, C_{10}\}$

 \rightarrow Using soft form factors

with 10% power correction errors: $\Delta \chi^2$ method

with 20% power correction errors: $\Delta \chi^2$ method

 1σ agreement for C_9 is possible even in the 2 operator basis!

 \rightarrow Using full form factors

with 5% power correction errors:

 $\Delta\chi^2$ method

with 10% power correction errors: $\Delta \chi^2$ method

 \rightarrow Using full form factors

with 5% power correction errors:

Absolute χ^2 method

with 10% power correction errors:

Using the full form factors, only 2σ agreement for C_9 could be possible.

Fit results for two operators: $\{C_9, C_9'\}$

 \rightarrow Using soft form factors

with 10% power correction errors: $\Delta \chi^2$ method

with 20% power correction errors: $\Delta \chi^2$ method

Fit results for two operators: $\{C_9, C_9'\}$

 \rightarrow Using soft form factors

with 10% power correction errors: $\Delta \chi^2$ method

Absolute χ^2 method

with 20% power correction errors: $\Delta \chi^2$ method

Absolute χ^2 method

 1σ agreement for C_9 is possible even in the 2 operator basis!

 \rightarrow Using full form factors

with 5% power correction errors: $\Delta \chi^2$ method

with 10% power correction errors: $\Delta \chi^2$ method

Fit results for two operators: $\{C_9, C_9'\}$

 \rightarrow Using full form factors

with 5% power correction errors: $\Delta \chi^2$ method

Absolute χ^2 method

with 10% power correction errors: $\Delta \chi^2$ method

hod

Using the full form factors, only 2σ agreement for C_9 could be possible.

Fit results for two operators: $\{C_9^e, C_9^\mu\}$

 \rightarrow Using soft form factors

with 10% power correction errors: $\Delta \chi^2$ method

with 20% power correction errors: $\Delta\chi^2$ method

Fit results for two operators: $\{C_9^e, C_9^\mu\}$

 \rightarrow Using soft form factors

with 10% power correction errors: $\Delta \chi^2$ method

No tension in $C_{9\mu}$ with 20% errors for power corrections!

 \rightarrow Using full form factors

with 5% power correction errors: $\Delta \chi^2$ method

with 10% power correction errors: $\Delta\chi^2$ method

Fit results for two operators: $\{C_9^e, C_9^\mu\}$

 \rightarrow Using full form factors

with 5% power correction errors: $\Delta \chi^2$ method

Absolute χ^2 method

Absolute χ^2 method

 2σ agreement still possible!

Fit results for four operators: $\{C_9, C'_9, C_{10}, C'_{10}\}$

Using full form factors with 5% power correction errors

ightarrow with $\Delta\chi^2$ method

Adding C_{10} or primed coefficients doesn't improve the fit

Fit results for four operators: $\{C_9, C'_9, C_{10}, C'_{10}\}$

Using full form factors with 5% power correction errors

 \rightarrow with absolute $\chi^{\rm 2}$ method

Adding C_{10} or primed coefficients doesn't improve the fit

Fit results for four operators: $\{C_9^{\mu}, C_9^{\prime \mu}, C_9^{e}, C_9^{\prime e}\}$

Using full form factors with 5% power correction errors

ightarrow with $\Delta\chi^2$ method

Separating electron and muon coefficients improves the fit by more than 2σ

Using full form factors with 5% power correction errors

 \rightarrow with absolute $\chi^{\rm 2}$ method

Separating electron and muon coefficients improves the fit by more than 2σ

Fit results for four operators: $\{C_9^{\mu}, C_{9}^{e}, C_{10}^{\mu}, C_{10}^{e}\}$

Using full form factors with 5% power correction errors

ightarrow with $\Delta\chi^2$ method

Again the non universal solutions are favoured

Fit results for four operators: $\{C_9^{\mu}, C_9^{e}, C_{10}^{\mu}, C_{10}^{e}\}$

Using full form factors with 5% power correction errors

 \rightarrow with absolute $\chi^{\rm 2}$ method

Again the non universal solutions are favoured

MFV fit results: $\{C_7, C_8, C_9, C_{10}, C_0'\}$

Using full form factors with 5% power correction errors

Preliminary

ightarrow with $\Delta\chi^2$ method

The tension in C_9 is present even in the MFV fit!

MFV fit results: $\{C_7, C_8, C_9, C_{10}, C_0'\}$

Using full form factors with 5% power correction errors

Preliminary

 \rightarrow with absolute χ^2 method

The tension in C_9 is present even in the MFV fit!

Comparison of exclusive and inclusive $b \rightarrow s\ell\ell$ observables

T. Hurth, FM, S. Neshatpour, JHEP 1412 (2014) 053

All three sets of exclusion plots nicely compatible with each other \rightarrow non-trivial consistency check

Nazila Mahmoudi

Rare B decays in 2015 - Edinburgh - 13 May 2015

Summary

- ullet There are two possible statistical approaches: $\Delta\chi^2$ and absolute χ^2
- With $\Delta\chi^2,$ the error on power corrections has a smaller impact than with absolute χ^2
- With $\Delta \chi^2$, in the two operator fits {C₉, C₁₀}, {C₉, C₉'}, {C₉^{μ}, C₉^e}, SM shows more than 2σ tension

 \rightarrow In principle there is no reason to consider only 2 operators!

- In the 4 operator fits, the tension in C_9 weakens but still exists at the 2σ level
- The tension in C_9 is also seen in the MFV fit

The tensions are almost GONE with abs χ^2 and 20% error for the power corrections! The largest remaining tension is for C_9^{μ} but it's less than 2σ

Summary

- There are two possible statistical approaches: $\Delta\chi^2$ and absolute χ^2
- With $\Delta\chi^2,$ the error on power corrections has a smaller impact than with absolute χ^2
- With $\Delta \chi^2$, in the two operator fits {C₉, C₁₀}, {C₉, C₉'}, {C₉^{μ}, C₉^e}, SM shows more than 2σ tension

 \rightarrow In principle there is no reason to consider only 2 operators!

- In the 4 operator fits, the tension in C_9 weakens but still exists at the 2σ level
- The tension in C_9 is also seen in the MFV fit

The tensions are almost GONE with abs χ^2 and 20% error for the power corrections! The largest remaining tension is for C_9^{μ} but it's less than 2σ

Conclusion

- Important to correctly choose the statistical method, depending on which question is asked
- There is a small tension of about 2σ , in the global fits in the absence of lepton flavour violation
- We should be cautious not over interpreting the tension
- \bullet To claim new physics, the use of $\Delta\chi^2$ is NOT appropriate, one needs to use the absolute χ^2
- The ideal would be to consider properly the Look Elsewhere Effect
- The cross check with the updated results in particular for $B_{\rm s} \to \phi \mu^+ \mu^-$ is awaited
- The cross check with the inclusive results is also of importance

Backup

At Belle-II, for inclusive $b \rightarrow s\ell\ell$: expected uncertainty of 2.9% (4.1%) for the branching fraction in the low- (high-) q^2 region, absolute uncertainty of 0.050 in the low- q^2 bin 1 (1 < q^2 < 3.5 GeV²), 0.054 in the low- q^2 bin 2 (3.5 < q^2 < 6 GeV²) for the normalised A_{FB}

T. Hurth, FM, JHEP 1404 (2014) 097 T. Hurth, FM, S. Neshatpour, JHEP 1412 (2014) 053

Predictions based on our model-independent analysis

black cross: future measurements at Belle-II assuming the best fit solution red cross: SM predictions

 \rightarrow inclusive mode will lead to very strong constraints

Observable	SM prediction	Measurement
$\overline{10^4 imes ext{BR}(B o X_s \gamma)}$	3.37 ± 0.19	3.43 ± 0.22
$10^2 imes \Delta_0(B o {\cal K}^* \gamma)$	$\textbf{6.9}\pm\textbf{3.0}$	5.2 ± 2.6
$\overline{10^9 imes ext{BR}(B_s o \mu^+ \mu^-)}$	3.54 ± 0.27	2.9 ± 0.7
$10^{10} imes { m BR}(B_d o\mu^+\mu^-)$	1.07 ± 0.27	3.6 ± 1.6
$R_{K q^2 \in [1.0, 6.0](GeV)^2}$	1.0006 ± 0.0004	0.745 ± 0.097
$\overline{10^6 \times \mathrm{BR} \left(B \to X_s e^+ e^- \right)_{q^2 \in [1,6] (\mathrm{GeV})^2}}$	$1.73^{+0.12}_{-0.12}$	1.93 ± 0.55
$10^6 imes { m BR} \left(B o X_s e^+ e^- ight)_{q^2 > 14.2 ({ m GeV})^2}$	$0.20\substack{+0.06\\-0.06}$	0.56 ± 0.19
$\overline{10^6 imes \mathrm{BR} \left(B ightarrow X_s \mu^+ \mu^- ight)_{q^2 \in [1,6] (\mathrm{GeV})^2}}$	$1.67\substack{+0.12\\-0.12}$	0.66 ± 0.88
$10^6 imes { m BR} \left(B o X_s \mu^+ \mu^- ight)_{q^2 > 14.2 ({ m GeV})^2}$	$0.23^{+0.07}_{-0.06}$	0.60 ± 0.31

SM predictions and experimental values of the $B^0 \to K^{*0} \mu^+ \mu^-$ observables

Observable	Soft FF (10%)	Soft FF (20%)	Full FF (5%)	Full FF (10%)	Measurement
		$q^2 \in [$	0.1, 0.98 GeV ²		
$\langle BR \rangle \times 10^7$	1.082 ± 0.157	1.082 ± 0.197	1.071 ± 0.148	1.071 ± 0.148	
$\langle F_L \rangle$	0.244 ± 0.042	0.244 ± 0.050	0.247 ± 0.037	0.247 ± 0.037	$0.263^{+0.046}_{-0.044} \pm 0.017$
$\langle A_{FB} \rangle$	-0.088 ± 0.019	-0.088 ± 0.036	-0.088 ± 0.006	-0.088 ± 0.008	$-0.003^{+0.057}_{-0.059} \pm 0.008$
$\langle S_3 \rangle$	0.000 ± 0.011	0.000 ± 0.023	0.007 ± 0.002	0.007 ± 0.003	$-0.036^{+0.063}_{-0.063} \pm 0.005$
$\langle S_4 \rangle$	-0.097 ± 0.007	-0.097 ± 0.010	-0.096 ± 0.005	-0.096 ± 0.005	$0.082^{+0.070}_{-0.066} \pm 0.009$
$\langle S_5 \rangle$	0.239 ± 0.014	0.239 ± 0.022	0.242 ± 0.010	0.242 ± 0.010	$0.170^{+0.060}_{-0.059} \pm 0.018$
$\langle S_7 \rangle$	0.022 ± 0.014	0.022 ± 0.026	0.022 ± 0.006	0.022 ± 0.006	0.015 ^{+0.059} _{-0.057} ± 0.006
$\langle S_8 \rangle$	-0.004 ± 0.006	-0.004 ± 0.012	-0.004 ± 0.003	-0.004 ± 0.003	0.079 ^{+0.077} _{-0.078} ± 0.007
$\langle S_9 \rangle$	-0.001 ± 0.011	-0.001 ± 0.023	-0.001 ± 0.000	-0.001 ± 0.001	-0.083 ^{+0.060} -0.059 ± 0.004
$\langle P'_{5} \rangle$	0.657 ± 0.024	0.657 ± 0.049	0.665 ± 0.008	0.665 ± 0.011	$0.387^{+0.141}_{-0.131} \pm 0.052$
		$q^2 \in$	[1.1, 2.5] GeV ²		
$\langle BR \rangle \times 10^7$	0.658 ± 0.078	0.658 ± 0.101	0.656 ± 0.069	0.656 ± 0.069	
$\langle F_L \rangle$	0.721 ± 0.045	0.721 ± 0.060	0.722 ± 0.037	0.722 ± 0.037	$0.660^{+0.088}_{-0.075} \pm 0.022$
$\langle A_{FB} \rangle$	-0.158 ± 0.029	-0.158 ± 0.038	-0.156 ± 0.024	-0.156 ± 0.024	$-0.191^{+0.069}_{-0.078} \pm 0.012$
$\langle S_3 \rangle$	0.000 ± 0.008	0.000 ± 0.016	0.003 ± 0.001	0.003 ± 0.002	$-0.077^{+0.089}_{-0.104} \pm 0.005$
$\langle S_4 \rangle$	-0.012 ± 0.009	-0.012 ± 0.009	-0.008 ± 0.008	-0.008 ± 0.009	$-0.077^{+0.112}_{-0.112} \pm 0.005$
$\langle S_5 \rangle$	0.106 ± 0.015	0.106 ± 0.017	0.108 ± 0.015	0.108 ± 0.015	0.137 ^{+0.094} _{-0.098} ± 0.009
$\langle S_7 \rangle$	0.035 ± 0.008	0.035 ± 0.010	0.034 ± 0.008	0.034 ± 0.008	$-0.219^{+0.093}_{-0.105} \pm 0.003$
$\langle S_8 \rangle$	-0.012 ± 0.004	-0.012 ± 0.006	-0.011 ± 0.004	-0.011 ± 0.004	$-0.098^{+0.107}_{-0.122} \pm 0.005$
$\langle S_9 \rangle$	-0.001 ± 0.008	-0.001 ± 0.016	-0.001 ± 0.001	-0.001 ± 0.001	$-0.119^{+0.087}_{-0.101} \pm 0.005$
$\langle P'_{5} \rangle$	0.252 ± 0.028	0.252 ± 0.035	0.258 ± 0.030	0.258 ± 0.032	$0.289^{+0.216}_{-0.200} \pm 0.023$
$q^2 \in [2.5, 4.0] \text{GeV}^2$					
$\langle BR \rangle \times 10^7$	0.637 ± 0.081	0.637 ± 0.117	0.637 ± 0.065	0.637 ± 0.065	
$\langle F_L \rangle$	0.808 ± 0.036	0.808 ± 0.056	0.807 ± 0.028	0.807 ± 0.028	$0.877^{+0.089}_{-0.096} \pm 0.017$
$\langle A_{FB} \rangle$	-0.053 ± 0.017	-0.053 ± 0.026	-0.051 ± 0.011	-0.051 ± 0.012	$-0.118^{+0.075}_{-0.088} \pm 0.007$
$\langle S_3 \rangle$	-0.011 ± 0.008	-0.011 ± 0.014	-0.010 ± 0.003	-0.010 ± 0.003	$0.035^{+0.101}_{-0.086} \pm 0.006$
$\langle S_4 \rangle$	0.124 ± 0.016	0.124 ± 0.022	0.127 ± 0.013	0.127 ± 0.013	$-0.234^{+0.132}_{-0.144} \pm 0.006$
$\langle S_{5} \rangle$	-0.146 ± 0.021	-0.146 ± 0.031	-0.144 ± 0.017	-0.144 ± 0.017	$-0.022^{+0.110}_{-0.104} \pm 0.008$
$\langle S_7 \rangle$	0.026 ± 0.024	0.026 ± 0.047	0.026 ± 0.006	0.026 ± 0.006	$0.068^{+0.119}_{-0.112} \pm 0.005$
$\langle S_8 \rangle$	-0.011 ± 0.009	-0.011 ± 0.017	-0.010 ± 0.003	-0.010 ± 0.003	$0.030^{+0.123}_{-0.127} \pm 0.006$
$\langle S_9 \rangle$	-0.001 ± 0.007	-0.001 ± 0.013	-0.001 ± 0.000	-0.001 ± 0.001	$-0.092^{+0.108}_{-0.125} \pm 0.007$
$\langle P'_{5} \rangle$	-0.386 ± 0.050	-0.386 ± 0.077	-0.382 ± 0.037	-0.382 ± 0.039	$-0.066^{+0.341}_{-0.360} \pm 0.023$

Nazila Mahmoudi

Rare B decays in 2015 - Edinburgh - 13 May 2015

SM predictions and experimental values of the $B^0 \to K^{*0} \mu^+ \mu^-$ observables

Observable	Soft FF (10%)	Soft FF (20%)	Full FF (5%)	Full FF (10%)	Measurement
		$q^2 \in$	[6.0, 8.0] GeV ²		
$\langle BR \rangle \times 10^7$	1.059 ± 0.105	1.059 ± 0.177	1.065 ± 0.065	1.065 ± 0.065	
$\langle F_L \rangle$	0.625 ± 0.073	0.625 ± 0.126	0.624 ± 0.041	0.624 ± 0.041	$0.579^{+0.043}_{-0.047} \pm 0.015$
$\langle A_{FB} \rangle$	0.228 ± 0.049	0.228 ± 0.083	0.230 ± 0.026	0.230 ± 0.026	$0.152^{+0.040}_{-0.040} \pm 0.008$
$\langle S_3 \rangle$	-0.044 ± 0.029	-0.044 ± 0.055	-0.045 ± 0.011	-0.045 ± 0.011	$-0.042^{+0.057}_{-0.058} \pm 0.011$
$\langle S_4 \rangle$	0.260 ± 0.021	0.260 ± 0.039	0.262 ± 0.009	0.262 ± 0.009	$-0.296^{+0.065}_{-0.065} \pm 0.011$
$\langle S_5 \rangle$	-0.393 ± 0.041	-0.393 ± 0.077	-0.391 ± 0.013	-0.391 ± 0.013	$-0.249^{+0.062}_{-0.061} \pm 0.012$
$\langle S_7 \rangle$	0.010 ± 0.079	0.010 ± 0.149	0.009 ± 0.003	0.009 ± 0.004	-0.047 ^{+0.066} _{-0.062} ± 0.003
$\langle S_8 \rangle$	-0.005 ± 0.031	-0.005 ± 0.060	-0.005 ± 0.002	-0.005 ± 0.002	$-0.085^{+0.072}_{-0.073} \pm 0.006$
$\langle S_9 \rangle$	-0.001 ± 0.026	-0.001 ± 0.052	-0.001 ± 0.001	-0.001 ± 0.002	-0.024 ^{+0.059} -0.062 ± 0.005
$\langle P'_{5} \rangle$	-0.819 ± 0.083	-0.819 ± 0.160	-0.814 ± 0.025	-0.814 ± 0.025	$-0.505^{+0.118}_{-0.177} \pm 0.024$
		$q^2 \in [$	15.0, 17.0] GeV ²		
$\langle BR \rangle \times 10^7$	1.258 ± 0.073	1.258 ± 0.092	1.258 ± 0.068	1.258 ± 0.073	
$\langle F_L \rangle$	0.339 ± 0.039	0.339 ± 0.055	0.339 ± 0.034	0.339 ± 0.039	0.349 ^{+0.040} _{-0.039} ± 0.009
$\langle A_{FB} \rangle$	0.409 ± 0.025	0.409 ± 0.037	0.409 ± 0.022	0.409 ± 0.026	$0.411^{+0.040}_{-0.035} \pm 0.008$
$\langle S_3 \rangle$	-0.181 ± 0.024	-0.181 ± 0.037	-0.181 ± 0.020	-0.181 ± 0.024	$-0.142^{+0.046}_{-0.047} \pm 0.007$
$\langle S_4 \rangle$	0.294 ± 0.008	0.294 ± 0.013	0.294 ± 0.007	0.294 ± 0.008	$-0.321^{+0.053}_{-0.078} \pm 0.007$
$\langle S_5 \rangle$	-0.315 ± 0.024	-0.315 ± 0.037	-0.315 ± 0.019	-0.315 ± 0.024	$-0.316^{+0.051}_{-0.058} \pm 0.009$
$\langle S_7 \rangle$	0.000 ± 0.034	0.000 ± 0.067	0.000 ± 0.017	0.000 ± 0.034	$0.061^{+0.058}_{-0.060} \pm 0.005$
$\langle S_8 \rangle$	0.000 ± 0.009	0.000 ± 0.018	0.000 ± 0.005	0.000 ± 0.009	$0.003^{+0.060}_{-0.060} \pm 0.003$
$\langle S_9 \rangle$	0.000 ± 0.016	0.000 ± 0.032	0.000 ± 0.008	0.000 ± 0.016	$-0.019^{+0.055}_{-0.057} \pm 0.004$
$\langle P'_{5} \rangle$	-0.666 ± 0.041	-0.666 ± 0.065	-0.666 ± 0.033	-0.666 ± 0.042	$-0.662^{+0.112}_{-0.126} \pm 0.017$
$q^2 \in [17.0, 19.0] \mathrm{GeV}^2$					
$\langle BR \rangle \times 10^7$	0.866 ± 0.055	0.866 ± 0.069	0.866 ± 0.051	0.866 ± 0.054	
$\langle F_L \rangle$	0.322 ± 0.042	0.322 ± 0.057	0.322 ± 0.037	0.322 ± 0.042	0.354 ^{+0.048} _{-0.048} ± 0.025
$\langle A_{FB} \rangle$	0.321 ± 0.023	0.321 ± 0.033	0.321 ± 0.021	0.321 ± 0.024	$0.305^{+0.048}_{-0.046} \pm 0.013$
$\langle S_3 \rangle$	-0.256 ± 0.025	-0.256 ± 0.034	-0.256 ± 0.021	-0.256 ± 0.024	$-0.188^{+0.076}_{-0.086} \pm 0.017$
$\langle S_4 \rangle$	0.309 ± 0.010	0.309 ± 0.014	0.309 ± 0.009	0.309 ± 0.010	$-0.266^{+0.065}_{-0.071} \pm 0.010$
$\langle S_{5} \rangle$	-0.224 ± 0.022	-0.224 ± 0.032	-0.224 ± 0.019	-0.224 ± 0.022	-0.323 ^{+0.062} _{-0.069} ± 0.009
$\langle S_7 \rangle$	0.000 ± 0.035	0.000 ± 0.071	0.000 ± 0.018	0.000 ± 0.035	$0.044^{+0.072}_{-0.073} \pm 0.013$
$\langle S_8 \rangle$	0.000 ± 0.007	0.000 ± 0.013	0.000 ± 0.003	0.000 ± 0.007	$0.013^{+0.067}_{-0.071} \pm 0.005$
$\langle S_9 \rangle$	0.000 ± 0.013	0.000 ± 0.025	0.000 ± 0.006	0.000 ± 0.013	-0.094 ^{+0.067} _{-0.069} ± 0.004
$\langle P'_{5} \rangle$	-0.481 ± 0.039	-0.481 ± 0.057	-0.481 ± 0.033	-0.481 ± 0.039	$-0.675^{+0.138}_{-0.152} \pm 0.017$

Nazila Mahmoudi

Rare B decays in 2015 - Edinburgh - 13 May 2015

$B_{s} o \phi \ \mu^{+} \mu^{-}$ SM prediction					
Observable	Soft FF (10%)	Soft FF (20%)	Full FF (5%)	Full FF (10%)	Measurement
		$q^2 \in [0.1]$, 2.0] GeV ²		
$\langle BR \rangle \times 10^7$	1.631 ± 0.134	1.631 ± 0.161	1.611 ± 0.095	1.611 ± 0.095	$0.90^{+0.21}_{-0.19} \pm 0.04 \pm 0.09$
$\langle F_L \rangle$	0.390 ± 0.043	0.390 ± 0.058	0.397 ± 0.034	0.397 ± 0.035	$0.37^{+0.19}_{-0.17} \pm 0.07$
$\langle S_3 \rangle$	-0.001 ± 0.010	-0.001 ± 0.020	0.006 ± 0.002	0.006 ± 0.003	$-0.11^{+0.28}_{-0.25} \pm 0.05$
		<i>q</i> ² ∈ [2.0	, 4.3] GeV ²		
$\langle BR \rangle \times 10^7$	1.013 ± 0.072	1.013 ± 0.112	1.017 ± 0.053	1.017 ± 0.054	$0.53^{+0.18}_{-0.16} \pm 0.03 \pm 0.05$
$\langle F_L \rangle$	0.802 ± 0.032	0.802 ± 0.053	0.803 ± 0.020	0.803 ± 0.020	$0.53^{+0.25}_{-0.23} \pm 0.10$
$\langle S_3 \rangle$	-0.012 ± 0.007	-0.012 ± 0.015	-0.011 ± 0.003	-0.011 ± 0.003	$-0.97^{+0.53}_{-0.03} \pm 0.17$
		<i>q</i> ² ∈ [4.30	, 8.68]GeV ²		
$\langle BR \rangle \times 10^7$	2.284 ± 0.095	2.284 ± 0.168	2.306 ± 0.058	2.306 ± 0.059	$1.38^{+0.25}_{-0.23} \pm 0.05 \pm 0.14$
$\langle F_L \rangle$	0.651 ± 0.063	0.651 ± 0.116	0.650 ± 0.029	0.650 ± 0.029	$0.81^{+0.11}_{-0.13} \pm 0.05$
$\langle S_3 \rangle$	-0.046 ± 0.025	-0.046 ± 0.049	-0.048 ± 0.010	-0.048 ± 0.010	$0.25^{+0.21}_{-0.24} \pm 0.05$
_		$q^2 \in [14.18]$, 16.0] GeV ²		
$\langle BR \rangle \times 10^7$	1.167 ± 0.072	1.167 ± 0.092	1.167 ± 0.066	1.167 ± 0.073	$0.76^{+0.19}_{-0.17} \pm 0.04 \pm 0.08$
$\langle F_L \rangle$	0.349 ± 0.036	0.349 ± 0.054	0.349 ± 0.030	0.349 ± 0.036	$0.34^{+0.18}_{-0.17} \pm 0.07$
(S ₃)	-0.172 ± 0.022	-0.172 ± 0.036	-0.172 ± 0.017	-0.172 ± 0.022	$-0.03^{+0.29}_{-0.31} \pm 0.06$
		$q^2 \in [16.0]$, 19.0]GeV ²		
$\langle BR \rangle \times 10^7$	1.280 ± 0.053	1.280 ± 0.068	1.280 ± 0.049	1.280 ± 0.054	$1.06^{+0.23}_{-0.21} \pm 0.06 \pm 0.11$
$\langle F_L \rangle$	0.325 ± 0.039	0.325 ± 0.056	0.325 ± 0.033	0.325 ± 0.039	$0.16^{+0.17}_{-0.10} \pm 0.07$
(S ₃)	-0.248 ± 0.022	-0.248 ± 0.034	-0.248 ± 0.018	-0.248 ± 0.022	$0.19^{+0.30}_{-0.31} \pm 0.05$
$BR(B \rightarrow K\mu^+\mu^-) SM$ prediction					
bin	Soft FF (10%)	Soft FF (20%)	Full FF (5%)	Full FF (10%)	Measurement
$10^7 imes \langle BR angle (B^0 o K^0 \mu^+ \mu^-)$					
$q^2 \in [1.1 - 6.0] \text{ GeV}^2$	1.353 ± 0.061	1.353 ± 0.100	1.350 ± 0.045	1.350 ± 0.045	$0.92^{+0.17}_{-0.16} \pm 0.04$
$q^2 \in [15.0 - 22.0] \mathrm{GeV}^2$	0.942 ± 0.014	0.942 ± 0.015	0.942 ± 0.014	0.942 ± 0.014	$0.67^{+0.11}_{-0.11} \pm 0.04$
$10^7 \times \langle BR \rangle (B^+ \to K^+ \mu^+ \mu^-)$					
$q^2 \in [1.1 - 6.0] \text{ GeV}^2$	1.481 ± 0.067	1.481 ± 0.110	1.477 ± 0.049	1.477 ± 0.049	$1.19 \pm 0.03 \pm 0.06$
$q^2 \in [15.0 - 22.0] \mathrm{GeV}^2$	1.024 ± 0.016	1.024 ± 0.016	1.024 ± 0.016	1.024 ± 0.016	$0.85 \pm 0.03 \pm 0.04$