

The University of Manchester

A low mass vertically integrated pixel system for the HL-LHC

Micro-Fabrication

In Micro-fabrication, used mainly for Micro-Electro Mechanical Systems (MEMS), the process is performed 3 dimensionally within the silicon volume.

Different processing types include:

- Surface: Structures are formed by deposition and etching of sacrificial and structural thin films
- Bulk, Volume: 3D structures formed by dry or wet etching of silicon substrates
- LIGA: 3D structures formed by mold fabrication followed by injection molding or electroplating
- 3D printing....

Applications:

- Everyday life (cars, portable devices..)
- Medical/Biology
- Space
- High Energy Physics
- **>** ...

Deep Reactive Ion Etching

Bosch Process

3D radiation sensors

3D silicon detectors were proposed in 1995 by S. Parker, and active edges in 1997 by C. Kenney.

Combine traditional electronics processing and Micro-Fabrication technology.

Electrodes are processed inside the detector bulk instead of being implanted on the Wafer's surface.

The edge is an electrode! Dead volume at the Edge < 5 microns!

The electric field parallel to the wafer's surface and smaller inter-electrode spacing give low bias voltage, low power, reduced charge sharing and high speed – for the same wafer thickness

3D sensors are now in the core of ATLAS

3DATLAS R&D Collaboration

NIMA 694 (2012) 321–330 2012 JINST 7 P11010.

CNM

FE-I4A-B

3D Silicon Sensors with variable column depth

2015 JINST 10 C04020

The HL-LHC Vertex detectors challenges:

Precision reconstruction
Needs the signal over threshold

Material budget is not the sensor

EoL fluence 2x10¹⁶ncm⁻² Radiation tolerance and power budget

A Possible Solution is an aggressive vertically integrated system composed by:

- 3D silicon sensor modules with active edges
- Interconnected with micro-bump bonds and through chip bias supply
- Embedded micro-cooling

3D sensors Radiation Hardness

SINTEF 1cm² diode IES 56 um

3D with 56 um inter electrode spacing and 200 micron thickness - 50% of the original charge available after 2x10^16ncm^-2

(I. Haughton PhD thesis)

Comparison 0 and 2x10¹⁶ncm⁻²

Advantages and Open Questions of Micro-channel cooling

Even lower mass:

Reduction of 'bulky' thermal interface required between cooling channel and substrate

Cooling channel is integrated in the substrate:

Can customize the routing of channels to run exactly under the heat sources.

Many parallel channels:

large liquid-to-substrate heat exchange surface.

No heat flows in the substrate plane:

Small thermal gradients across the module.

All material is silicon or silicon compatible:

- ❖ No mechanical stress due to CTE mismatch.
- Big Open Question 1: how to homogeneously cool a 1.5m stave
- Big Open Question 2: reliable low-mass connectors for an innermost barrel layer

Not new in HEP: see LHCb talk

3D Vertically Integrated Module

- 3D silicon: CNM double side 285 um thick IBL qualification batch
- FE-I4A: thinned to 100um at IZM
- Si-Si micro-channels designed by CERN PH-DT, produced by PH-DT in EPFL CMi cleanroom, direct bonding CSEM
- Glue: 2-components Masterbond EP37-3FLFAO

Module assembly

Kovar connectors laser soldered to stainless steel tube - to demonstrate the feasibility.

Cu coating of the connector and bending of the tube

Response to MIPs

occupancy

CO2 inlet and outlet

TRACI V3

Transportable
Refrigeration
Apparatus for CO₂
Investigation

Cinzia Da Via, Manchester. Vienna Conference on Instrumentation 18-02-2016

Installation and thermal sensors layout

Board installed in the vacuum vessel

Vacuum level up to 10⁻³ mbar Temperature down to -25 °C Pressure readings

 CO_2 flow from **TRACI** Refrigeration (Transportable **Apparatus** for CO₂ Investigation)

PT100 #1 and 2 glued on the back!!

35 micro-channels 190 μm separated by 200 um wide walls

15.6

Chip footprint

Temperatures during IV curve OUT

16.5

In2 In1

Leakage Current-Temperature Dependence

FE-I4 Chip OFF

- Δ T between T setpoint (on TRACI) and T measured is ~2°C
- T is a mean over 10
 PT100 measurements
 on the micro
 channels
- Flow: CO2, 0.5 g/s

Temperature Repeatability

FE-I4 Readout electronics Chip OFF

- Temperature spanning done several times to check IV curves repeatability
- The resulting ΔI is due to small temperature differences between the curve and from ramp up/ramp down hysteresis

Constant Bias Voltage & varying Temperature

- Fixed Bias Voltage: -30V
- Various temperature points

Determination of the Thermal Figure of Merit

Extrapolated Ton or Toff

Measured current

STEP 1:

- Chip off: measure leakage current for certain temperature and fixed voltage (30V)
- Obtain curve for average leakage current

STEP 2:

- Chip off: measure current
- Determine Toff by using curve
- As in vacuum T off = T CO2

STEP 3:

- Chip on: measure current
- Determine Ton by using curve

STEP 4:

Determine ΔT = Toff - Ton

$$= \frac{\Delta T \cdot A}{Power} = \frac{1.5 \ K \cdot 4cm^2}{1.5 \ W} = 4 \ \frac{K \ cm^2}{W}$$

Best 2015
laboratory results
for ITK studies (IBL
configuration) TFoM
= 13 K cm2/W

Direct Test of Thermal Figure of Merit

- Heater on a bare microchannel operated at room T to simulate power dissipation
- Temperature measured using an Infra-Red FLIR A655sc-Camera

45 °C

No cooling at 1.5 W!!!

Addressing open questions 3D printed Alumina

connectors

Prototypes micro-channels

99.5% Aluminum Oxide						
Mechanical	Units of Measure	SI/Metric				
Density	gm/cc (lb/ft ³)	3.89				
Porosity	% (%)	0				
Color	-	ivory				
Flexural Strength	MPa (lb/in ² x10 ³)	379				
Elastic Modulus	GPa (lb/in ² x10 ⁶)	375				
Shear Modulus	GPa (lb/in ² x10 ⁶)	152				
Bulk Modulus	GPa (lb/in ² x10 ⁶)	228				
Poisson's Ratio	_	0.22				
Compressive Strength	MPa (lb/in ² x10 ³)	2600				
Hardness	Kg/mm ²	1440				
Fracture Toughness K _{IC}	MPa•m ^{1/2}	4				
Maximum Use Temperature (no load)	°C (°F)	1750				
Thermal						
Thermal Conductivity	W/m°K (BTU•in/ft²•hr•°F)	35				
Coefficient of Thermal Expansion	10 ⁻⁶ /°C (10 ⁻⁶ /°F)	8.4				
Specific Heat	J/Kg•°K (Btu/lb•°F)	880				
Electrical						
Dielectric Strength	ac-kv/mm (volts/mil)	16.9				
Dielectric Constant	@ 1 MHz	9.8				
Dissipation Factor	@ 1 kHz	0.0002				
Loss Tangent	@ 1 kHz	_				
Volume Resistivity	ohm•cm	>10 ¹⁴				

Si 2.6

Fludic connector in Alumina designed to match the ATLAS micro-channels design

Soldering test with metallized ceramic on silicon

Alumina micro-channel prototype

ŭ	Ax¤	Вуя	Cz¤	D¤
théorique¤	28¤	10¤	1,4¤	1,6¤
tolérances¤	±·0,2¤	±·0,2¤	±·0,2	±-0,23
1¤	28,3¤	10,15	1,44¤	1,43¤
2¤	28,333	10,15	1,45¤	1,43¤
3¤	28,338	10,15	1,45¤	1,43¤
4д	28,37	10,18	1,46¤	1,43¤

Ceramic Microchannel Prototypes

10 mm channels

External channels lenght: 10.364 mm Internal channels lenght: 8.26 mm Straight part lenght: 5mm Distance between holes: 8 mm Inlet holes diameter: 1.6 mm

20 mm channels

4 Channels lenght: 20.52 mm Straight part lenght: 5mm Distance between holes: 16 mm Inlet holes diameter: 1.6 mm

Conclusions and Plans

The first integrated module with reduced radiation length composed by:

3D silicon sensor 285 um FE-I4A readout chip 100 um

Si-Si microchannel cooling 500 um (not optimised)

was successfully tested showing normal electrical and thermal performances when cooled with CO2 with a figure of merit of 4 (1/3 of the current one)

- \triangleright We plan to irradiate it to the FE-I4 limit (5x10¹⁵ncm-²)
- ➤ We are planning to test alternative 3D printed Alumina connectors and channels. These might solve the open questions on the potential use of micro-channel cooling in inner pixel layers.
- ➤ 3D printed ceramic could be used to fabricate staves!

If this works it might make micro-channel cooling a possible option by the time of the PH2 since fabrication time (and tests) could be faster

