

THE 14TH VIENNA CONFERENCE ON INSTRUMENTATION 15 – 19 February 2016

Recent results with HV-CMOS and planar sensors for the CLIC vertex detector

Niloufar Alipour Tehrani (CERN, ETH Zürich) On behalf of the CLICdp collaboration

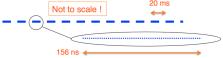
VCI2016 - The 14th Vienna Conference on Instrumentation Semiconductor Detectors Session Vienna University of Technology, Austria 18 February 2016

Introduction

- 2 Requirements for the vertex and tracker detectors
 - R&D on sensor and readout technologies
 - Characterisation of thin & active-edge planar sensors with the Timepix3 ASICs
 - CLICpix readout ASIC
 - CLICpix readout ASIC & planar sensors
 - CLICpix readout ASIC & HV-CMOS active sensor

Onclusions

- - Characterisation of thin & active-edge planar sensors with the Timepix3
- CLICpix readout ASIC
- CLICpix readout ASIC & planar sensors
- CLICpix readout ASIC & HV-CMOS active sensor


The Compact Linear Collider (CLIC)

- A concept for an e^+e^- linear collider for the post HL-LHC period.
- Energy range \sqrt{s} : 380 GeV to 3 TeV
 - Two-beam acceleration scheme with gradients of \sim 100 MV/m.
- Precision measurements of:
 - Standard Model processes (Higgs, top).
 - New physics potentially discovered at 13 TeV LHC.
 - Search for new physics: unique sensitivity to particles with electroweak charge.

CLIC beam profile

CLIC bunch structure

• 1 train consists of 312 bunches with 0.5 ns spacing.

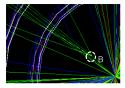
	LHC at 13 TeV	CLIC at 3 TeV
$\mathcal{L}[cm^{-2}s^{-1}]$	$1 imes 10^{34}$	$6 imes 10^{34}$
BX separation [ns]	25	0.5
#BX/train	2808	312
Train duration	90 µs	156 ns
Train repetition	11 kHz	50 Hz
σ_x / σ_y [nm]	15000/15000	$\approx 45/1$
σ_{z} [nm]	\sim 50000	44

- Short train duration implies:
 - triggerless readout of the detectors.
 - power pulsing: allows to reduce the average power dissipation.

- Bunch separation and train duration: drive timing resolution requirements for the detectors.
- Very small beam sizes at the interaction point ⇒ beam-induced backgrounds:
 - ► e⁺e⁻ pairs: low p_T, forward peaked, limits the inner radius of the VXD.
 - $\gamma \gamma \rightarrow$ hadrons: larger $p_{\rm T}$ particles.

Requirements for the vertex and tracker detectors

- R&D on sensor and readout technologies
 - Characterisation of thin & active-edge planar sensors with the Timepix3 ASICs
- CLICpix readout ASIC
- CLICpix readout ASIC & planar sensors
- CLICpix readout ASIC & HV-CMOS active sensor

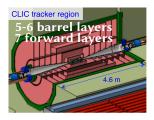

4 Conclusions

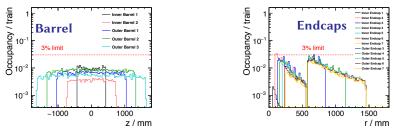
CLIC vertex-detector requirements

- Efficient tagging of heavy quarks through a precise determination of displaced vertices can be achieved by:
 - Multi-layer VXD: 6 layers in the barrel and 6 disks
 - B-field: 4 T.
 - Single point resolution of ~3 μm: 25 μm pixel pitch & analog readout.
 - $\blacktriangleright\,$ Low material budget: $< 0.2\%\,X_0/layer$ and beam-pipe
 - ★ forced airflow cooling & low-power electronics (≈ 50 mW/cm²)
- Time slicing of ~10 ns to reduce the impact of beam-induced backgrounds.
 ⇒ high-resistive & depleted sensors, readout

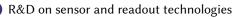
with precise timing.

- Moderate radiation exposure of the vertex detector:
 - Total ionising dose (TID): <1 kGy/yr</p>
 - ► Non-ionising energy loss (NIEL): 10¹¹ n_{eq}/cm²/yr (ATLAS phase 1: 10¹⁵ n_{eq}/cm²/yr)




56 cm

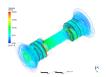
CLIC outer tracker requirements


- Momentum resolution (Higgs recoil mass, $H \rightarrow \mu\mu$, BSM leptons): $\sigma(p_T)/p_T^2 \sim 2 \times 10^{-5} \text{ GeV}^{-1}$
 - 7 µm single-point resolution
 - $\blacktriangleright \sim 1.5 2\% X_0/layer$ (low-mass supports, cabling and cooling)
- Time stamping with ~ 10 ns accuracy to reject background.

• Beam-induced background hits from $\gamma\gamma \rightarrow$ hadrons and incoherent pairs:

• Readout granularity defined by the backgrounds occupancy of $\sim 3\%$ $\Rightarrow 50\,\mu m$ pitch and 1-10 mm strip lengths.

- Characterisation of thin & active-edge planar sensors with the Timepix3 ASICs
- CLICpix readout ASIC
- CLICpix readout ASIC & planar sensors
- CLICpix readout ASIC & HV-CMOS active sensor


CLIC vertex-detector R&D programme

- Wide range of R&D activities for the CLIC VXD
- Readout ASICs

Powering

Cooling

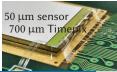
Sensors

 Mechanical integration

• Simulations

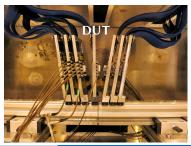
• Light-weight supports

Next slides focus on recent developments on the sensor, readout R&D and simulations.



- R&D on sensor and readout technologies
- Characterisation of thin & active-edge planar sensors with the Timepix3 ASICs
- CLICpix readout ASIC
- CLICpix readout ASIC & planar sensors
- CLICpix readout ASIC & HV-CMOS active sensor

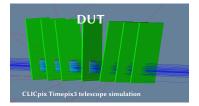
Conclusions


Thin planar sensor R&D

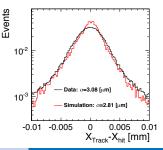
- The ultimate goal for CLIC:
 - 50 μm sensor on 50 μm readout ASIC with 25 μm pixel-pitch.
- Feasibility of thin sensors tested with Timepix/Timepix3 readout chips:
 - ► 55 µm pixel-pitch.
 - Simultaneous measurement of time (TOA) and energy (TOT).
- Sensor thicknesses: 50 μ m to 300 μ m.
- Test-beam campaigns with:
 - EUDET/AIDA telescope at DESY and CERN PS/SPS.
 - CLICpix Timepix3 telescope at CERN SPS.

Niloufar Alipour Tehrani (CERN-ETHZ)

- Test-beam data is used to validate simulations and to extrapolate to pixels with a pitch of 25 μm.
- The CLICpix Timepix3 telescope for reference tracking:
 - ~ 2 µm pointing resolution on the device under test (DUT) for 120 GeV pions.
 - ~ 1 ns time resolution per plane.

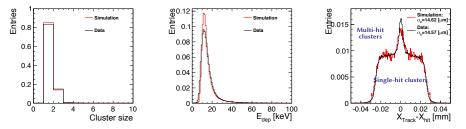


ALLPix: a GEANT4-based simulation framework

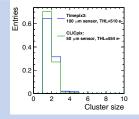

- ALLPix: a general purpose pixel-detector simulation framework (in C/C++) based on GEANT4.
- Fully customisable for detector geometry description:
 - thickness, pixel-pitch, bump geometry, material
- Digitiser test-bench for ATLAS and CLICdp.

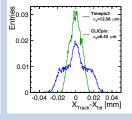
• Goal:

- Simulate the test-beam setup.
- Extrapolate results for small-pitch pixels (e.g. CLICpix with 25 μm pitch).
- Improve digitisation models for full-detector simulation.
- Good agreement between the Timepix3 telescope digitiser and the data.

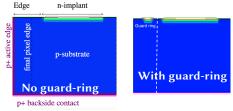


• Biased residual on the first telescope plane in x-direction:

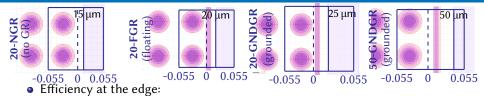

Thin sensors test-beam results & simulation

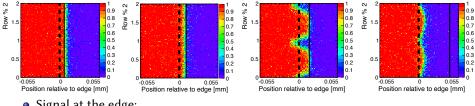

 Validation of the ALLPix simulation with test-beam results for 50 μm-thick sensor, 55 μm pitch and THL~ 500 e- (noise RMS for simulations: 90 e-).

Prediction for a 50 μ m sensor and 25 μ m pitch in simulation:

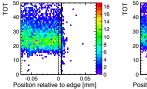

- Including the telescope tracking resolution: $\sigma \sim 6.4 \, \mu m$
- New solutions needed to achieve the required single-point resolution of $\sigma \sim 3 \,\mu\text{m}.$

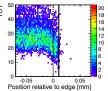
The DRIE (Deep Reactive-Ion Etching) process is used to cut an active-edge silicon sensor.

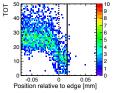

- Implantation on the sidewall of the sensor ⇒ control the potential at the edge by creating an extension of the backside electrode on the edge.
- Guard-rings: metal and n-implants to establish a smooth voltage drop between the edge and the last pixel.

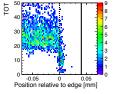


• Advacam active-edge devices (n-in-p) bump-bonded to the Timepix3 ASICs:


Assembly	Sensor thickness [µm]	Edge width [µm]	Edge type
20-NGR	50	20	No guard-ring
20-FGR	50	20	Floating guard-ring
20-GNDGR	50	20	Grounded guard-ring
50-GNDGR	50	50	Grounded guard-ring


Active-edge planar sensors (50 µm): efficiency & signal





• Signal at the edge:

Conclusions on thin active-edge planar sensors

- Devices without guard-ring and with floating guard-ring are efficient up to the physical edge of the sensor.
- The grounded guard-ring is not suitable for thin sensors: for 20-GNDGR, the efficiency drops before the last pixel and in-between the pixels.
- For thin sensors, the floating guard-ring shows a compromise between the signal lost in the guard-ring and an acceptable breakdown behavior (leakage current).
- Ongoing TCAD simulation studies for different guard-ring solutions:

Requirements for the vertex and tracker detectors

R&D on sensor and readout technologies

- Characterisation of thin & active-edge planar sensors with the Timepix3 ASICs
- CLICpix readout ASIC
- CLICpix readout ASIC & planar sensors
- CLICpix readout ASIC & HV-CMOS active sensor

4 Conclusions

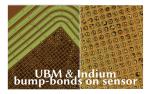
CLICpix readout ASIC demonstrator

- Hybrid readout chip: 65 nm CMOS technology
- Based on Timepix/Medipix chip family
- Intended for the CLIC vertex detector:
 - Demonstrator chip with 64×64 matrix
 - ► 25 µm pixel pitch
 - 4-bit time (TOA) & energy (TOT) measurement
 - Front-end time slicing < 10 ns</p>
 - > Data compression: pixel, cluster & column-based
 - Full chip readout in < 800 µs: at 10% occupancy, < 320 MHz readout clock
 - Power-pulsing scheme: P_{avg} < 50 mW/cm²
- Tested with:
 - bump-bonded planar sensors
 - active HV-CMOS sensors

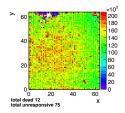
Requirements for the vertex and tracker detectors

R&D on sensor and readout technologies

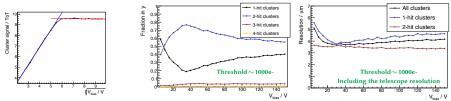
- Characterisation of thin & active-edge planar sensors with the Timepix3
- CLICpix readout ASIC
- CLICpix readout ASIC & planar sensors
- CLICpix readout ASIC & HV-CMOS active sensor



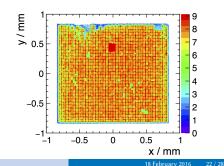
CLICpix: planar sensor assemblies


- Single-chip bump-bonding process for 25 μm pitch \Rightarrow developed at SLAC (C. Kenney, A. Tomada).
- 3 test assemblies produced with 200 µm n-in-p CLICpix sensors from Micron Velopix wafer.
- Process flow:
 - Spin photoresist
 - Expose with contact aligner
 - Evaporator: 4 μm Indium
 - Lift-off
 - bumping
- Defects due to the indium solder bumps (did not stick everywhere):
 - 0.2-3% unconnected channels
 - 1-2% shorted channels

 Correlation between unconnected and shorted pixels with defects visible before flipping.



• Laboratory measurements with the ⁹⁰Sr source:



CLICpix: planar sensor test-beam results

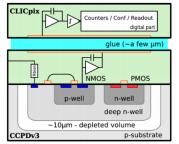
- Beam-tests with the EUDET/AIDA telescope at CERN SPS H6B
- Depletion voltage at 35 V with maximal charge sharing and best resolution of $4 \mu m$ (including the telescope resolution of $1.6 \mu m$).

- High detection efficiency: > 99%
- Average signal of leading pixel in cluster in test-beam
 - Identification of dead and shorted pixels
 - In shorted pixels, the charge is shared ⇒ reduced.

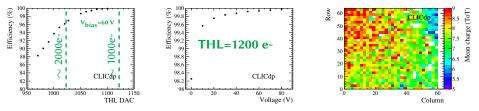
Requirements for the vertex and tracker detectors

R&D on sensor and readout technologies

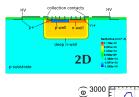
- Characterisation of thin & active-edge planar sensors with the Timepix3
- CLICpix readout ASIC
- CLICpix readout ASIC & planar sensors
- CLICpix readout ASIC & HV-CMOS active sensor

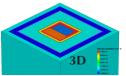

HV-CMOS active sensor with capacitive coupling

- Capacitive coupled pixel detector (CCPDv3) used as active sensor integrating sensor & amplifier
 - Commercial 180 nm HV-CMOS process.
 - Two-stage amplifier in each pixel: t_{peak}=120 ns.
 - ► Deep n-well shields electronics from substrate bias ⇒ prevents charge loss to electronics wells.
 - ► Biased at 60 V ⇒ create a depletion layer with fast signal collection through drift.
 - ► Through a layer of glue, the CCPDv3 chip is capacitively coupled from its amplifier output to the CLICpix readout ASIC ⇒ no bump-bonding.

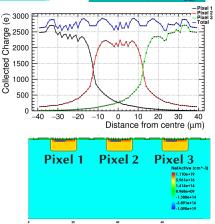

• 250 µm-thick sensor

CCPDv3-CLICpix test-beam results


- Test-beam at CERN SPS with EUDET/AIDA telescope:
 - High detection efficiency even without bias
 - Non-uniformity of the glue thickness can be seen in the variation of the measured mean charge (TOT) across matrix
 - $\sim 6 \,\mu m$ single-point resolution.



- Proof of principle for HV-CMOS sensors achieved
- Updated CLICpix2 readout ASIC (128 × 128 matrix) and HV-CMOS sensors are being produced based on the results obtained from CCPDv3 and bump-bonded planar sensors.


TCAD simulation of CCPDv3

- n-in-p CCPDv3 pixel layout implemented in TCAD:
- 3D simulations used to prove 2D simulation

- MIP scan and charge collected by the neighbouring pixels after a timing integration of 100 ns:
 - Uniform charge collection
 - Diffusion to neighbouring pixels

Requirements for the vertex and tracker detectors

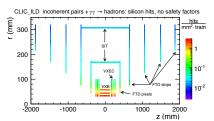
R&D on sensor and readout technologies

- Characterisation of thin & active-edge planar sensors with the Timepix3 ASICs
- CLICpix readout ASIC
- CLICpix readout ASIC & planar sensors
- CLICpix readout ASIC & HV-CMOS active sensor

4 Conclusions

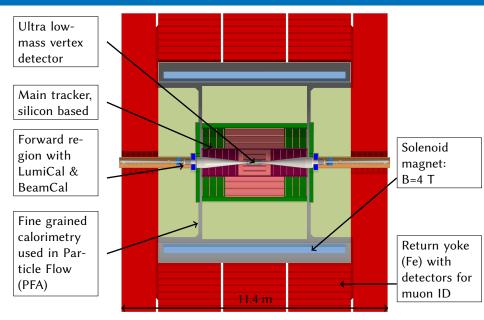
Conclusions

- Challenging requirements for the CLIC vertex detector and tracker.
- A very active R&D on sensor and readout ASICs
 - Thin planar sensors with Timepix3 readout, validation of simulations and prediction of resolution for the final CLIC requirements.
 - Different guard-ring solutions for thin active-edge sensors tested.
 - CLICpix ASICs
 - * Planar sensors bump-bonded successfully to fine 25 μm pitch.
 - * Proof of principle for the HV-CMOS active sensors achieved

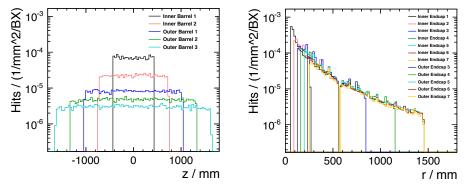

Backup slides

Beam-induced backgrounds at CLIC

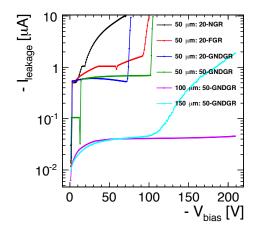
- Backgrounds:
 - e^+e^- pairs: low p_T , forward peaked, limits the inner radius of the VXD.
 - $\gamma\gamma \rightarrow$ hadrons: larger p_T particles.
- Each train consists of:
 - At most 1 interesting event.
 - > 30000 background particles inside the detector.


• Occupancy in the pixel detectors for each train (during 156 ns): \sim 3% for innermost layers.

- Radiation exposure of the vertex detector is moderate:
 - Total ionising dose (TID): 200 Gy/yr
 - ► Non-ionising energy loss (NIEL): $10^{11}n_{eq}/cm^2/yr$ (for ATLAS phase 1: $10^{15}n_{eq}/cm^2/yr$)


CLIC detector concept

Occupancy in the tracker


- B=4 T
- 50 µm pitch in the tracker
- Barrel strip lengths:
 - Layers 1 & 2: 1 mm
 - Layer 3: 5 mm
 - Layers 4 & 5: 10 mm

- Endcap strip lengths:
 - Inner discs: 1 mm
 - Outer discs: 10 mm

Leakage current in active-edge sensors

- Sensor type: n-in-p
- IV-curve measurement for all the tested assemblies:
 - The sensor without any guard-ring (20-NGR) has the highest leakage current and the break-down occurs earlier.

