

Development of a compact scintillator-based high-resolution Compton camera for molecular imaging

A. Kishimoto (Waseda Univ., JPN)

J. Kataoka, K. Sueoka, A. Koide, T. Taya (Waseda Univ.), S. Ohsuka (Hamamatsu Photonics, K.K)

Outline

- Introduction
- Handheld Compton camera for environmental measurement
- Development of high-resolution Compton camera
- 3D image reconstruction
- Summary

Outline

- Introduction
- Handheld Compton camera for environmental measurement
- Development of high-resolution Compton camera
- 3D image reconstruction
- Summary

Various molecular imaging devices

Current imaging technique

Advantage of Compton camera

wide energy range (300~2000 keV)

Fused image of different isotopes

wide field of view (~180 deg)

3D imaging
@ low detector costs

... expected for next-generation imaging instrument!

Principle of Compton camera (CC)

Compton Kinematics :

$$cos\theta_{k} = 1 - \frac{m_{e}c^{2}}{E_{2}} + \frac{m_{e}c^{2}}{E_{1} + E_{2}}$$

- γ-ray incident direction is calculated by energy and position information
- \triangleright ARM $\equiv \theta_k \theta_g$

For high resolution

- large distance (d)
- thin detectors (Δz)
- good energy resolution (ΔE)

For high efficiency

- small distance (d)
- thick detectors (Δz)
- large effective area

Can achieve good resolution and efficiency at the same time ...?

Our Compton camera project

2011-2013 handheld CC (ver.1) 2012-2015 handheld CC (ver.2)

2015high-resolution CC

To identify radiation hotspots created after the 2011 Japan nuclear disaster

for medical measurement

For molecular imaging, proton therapy monitoring

Outline

- Introduction
- Handheld Compton camera for environmental measurement
- Development of high-resolution Compton camera
- 3D image reconstruction
- Summary

3-D position-sensitive scintillator (DOI)

MPPC

Y₂₋

layer of air

crystal block

- ✓ Coupling Ce:GAGG scintillators and 8x8 MPPC arrays
- ✓ Calculate 3D interaction position by centroid method
- ✓ 1mm position resolution can be achieved in scintillator block

$$X = ((X_{1+} + X_{2+}) - (X_{1-} + X_{2-}))/(S_1 + S_2)$$

$$Y = ((Y_{1+} + Y_{2+}) - (Y_{1-} + Y_{2-}))/(S_1 + S_2)$$

$$Z = LS_1/(S_1 + S_2)$$

Handheld Compton camera

scatterer

pixel size : 2x2x4 mm³

□ array : 11x11, 4set

☐ 2 layer (non DOI)

absorber

pixel size : 2x2x2 mm³

□ array : 11x11x10, 4set

10 layer DOI

Performance of Handheld CC

- ✓ Angular resolution : 8~9 deg (FWHM)
- ✓ Intrinsic efficiency : 0.4 %
- Two sources separated by 10 degrees were clearly distinguished

Performance: Real time measurement

➤ Intensity of ¹³⁷Cs : 1 MBq ¹³⁷Cs

Source distance : 30 cm

137**C**S

Field tests at Fukushima

Outline

- Introduction
- Handheld Compton camera for environmental measurement
- Development of high-resolution Compton camera
- 3D image reconstruction
- Summary

scatterer

d=50mm

absorber

Development of high-resolution CC

How to improve the resolution ...?

- ✓ In handheld CC, position uncertainty has largest effect on the angular resolution @ 662 keV
- ✓ By optimization of the detector geometry, ~twice improvement in angular resolution can be expected!

Development of high-resolution CC

scatterer

- pixel size : 0.5x0.5x3 mm³
- □ array : 40x40
- 2 layer (non DOI)

absorber

- pixel size : 2x2x2 mm³
- array : 11x11x10
- 10 layer DOI

- ✓ More compact & flexible sensor head (1/4 scale)
- ✓ By changing scatterer-absorber distance, resolution, efficiency, and FOV are variable to suit the situation

Basic performance of high-resolution CC

Outline

- Introduction
- Handheld Compton camera for environmental measurement
- Development of high-resolution Compton camera
- 3D image reconstruction
- Summary

3D reconstruction method (3D MLEM)

3D List-mode MLEM method

Maximum Likelihood Expectation Maximization

$$\lambda_j^n = \frac{\lambda_j^{n-1}}{s_j} \sum_{i=1}^N \frac{t_{ij} v_i}{\sum_k t_{ik} \lambda_k^{n-1}}$$
$$t_{ij} = \left| \overrightarrow{L} \right|^{-2} \exp\left[-\frac{1}{2} \left(\frac{x}{\sigma} \right)^2 \right] \times \frac{1}{\sin^2 \theta}$$

 λ_j^n : the value of the image pixel j at the nth iteration s_j : probability i: event number t_{ij} : weighted likelihood σ : spatial resolution $\Delta\theta$: intrinsic angular resolution

- Expanded list-mode MLEM to 3D
- ✓ Image region: 8cm x 8cm x 8cm
- ✓ Calculate sensitivity map (s_i) by Geant4

Single angle v.s. Multi angle data acquisition

- ✓ In depth (z) direction, CC image has large position uncertainty because of lack of z intersecting data (single-angle)
- ✓ To compensate for the lack of data, we acquire the data from several angles for imaging region (multi-angle)
- ✓ In multi-angle acquisition, we rotate one Compton camera.

Results of 3D imaging: 1 (single color source)

- single angle data-acquisition
- ✓ Integration time : 5 min.
- Two sources of 9 mm separation were clearly distinguished

Results of 3D imaging: 2 (phantom imaging)

- ✓ 3 syringes (ф4.5mm) phantom filled with ¹⁸F (~0.75MBq)
- √ 12-angle data acquisition
- ✓ Total integration time: 15 m

energy spectrum

Results of 3D imaging: 3 (multi color source)

Imaging different-energy sources at the same time!

- ²²Na(511keV), ¹³⁷Cs(662keV), ⁵⁴Mn(834keV)
- 12-angle data-acquisition
- Integration time: 12 x 30sec

1800

1600

1200

1000

800

600

400

200

40

20

X [mm]

MLEM: 20 iteration

²²Na

-20

20

-20

300

200

²²Na

Results of 3D imaging: 3 (multi color source)

- ✓ Each source is imaged in real position
- ✓ Intensity of each source is almost reconstructed correctly
- By multi-angle data acquisition, colored 3D image can be obtained even at low detector cost

Summary

- ✓ New Compton camera for molecular imaging has achieved more compact size (1/4) and good angular resolution (4.5 deg). ¹³⁷Cs point source was imaged in spatial resolution of ~3mm.
- ✓ By measuring data from several angles, uncertainty in the depth direction significantly decreased and 3D reconstruction became possible.
- ✓ By the Compton camera, we succeeded 3D multi-color imaging of different-energy sources at the same time.

Appendix

Dependence on the number of angle

- ✓ Study dependence of spatial resolution on the number of data acquisition step
- ✓ Rotate one detector around the imaging region
- ✓ To compare the image quality fairly, total data acquisition time is same

Dependence on the number of angle

Evaluate image accuracy of diffuse source

$$\checkmark NMSE = \frac{\sum_{x} \sum_{y} \{g(x,y) - f(x,y)\}^{2}}{\sum_{x} \sum_{y} f(x,y)^{2}}$$

f(x, y): standard image

g(x, y): reconstructed image

DOI method

- ➤ In the 2D (x,y) direction reflectors divide each pixels
- In the DOI (z) direction layers of air divide each pixels

Read-out diagram

The contribution of energy resolution

The contribution of geometry

The contribution of geometry

The configuration of 3-D Compton Camera

The definition of angular resolution

$$\triangleright ARM \equiv \theta_e - \theta_g$$

$$\triangleright \Delta\theta \equiv \Delta ARM$$

 $\triangle \theta = 8.8$ degree (FWHM) @3-D, center of the visual field

2D energy spectrum

Ce: GAGG scintillator

Ce: $Gd_3Al_2Ga_3O_{12}$

scintillator		Ce:GAGG	Tl:NaI	Tl:CsI	BGO
Density	$ m g/cm^3$	6.63	3.67	4.53	7.13
Decay constant	ns	88	230	1050	300
Hygro scopic		no	yes	yes	no
Photons per MeV	photon/MeV	60000	45000	56000	8000
Energy resolution	%@ ¹³⁷ Cs-662keV, 5mm cubic crystal	6.3	5.6	5.7	12
Melting point	°C	1850	651	621	1050
Emission	nm	520	415	550	480

