

LHCb VELO: Radiation Damage Effects and Operations in Run 2

K. Akiba on behalf of the VELO group

14TH VIENNA CONFERENCE ON INSTRUMENTATION

VELO system

- Operated in a secondary vacuum, sensors and front-end
- A 300 μm thick Al **foil** separates the VELO Vacuum from the LHC

The VELO was designed for:

- Minimal material budget.
- Excellent primary and secondary vertexing and tracking.
- Outstanding impact parameter resolution.

VELO system

2 Moveable halves

• Bi-phase **CO**₂ cooling system: Operation at -30°C

• → sensors at -10°C in operation

VELO system

- 42 Modules
- 1R & 1\phi sensors/module
- 2048 strips/sensor
- 300 μm **n-on-n** sensors!
 - 2 n-on-p
- Active @ 8 mm from beam
- Non-uniform and high radiation exposure:

LHC RUN I	Delivered Luminosity	Highest Fluence* per fb ⁻¹
CMS pixel	~29.5 fb ⁻¹	3x10 ¹² 1MeV n _{eq} /cm ² At 39 mm
VELO	~3.4 fb ⁻¹	5x10 ¹³ MeV n _{eq} /cm ² At 8 mm

*Estimated

R-sensors: 45 degree quadrants Pitch = $40-101.6 \mu m$. Φ-sensors: 2 regions (inner/outer strips) Pitch = $35.5-96.6 \mu m$ 172k channels $0.112 \, \text{m}^2$ Analogue readout at 1.1MHz

Challenges for Run II

- Higher rate, higher energy, slightly more occupancy
 - Although the front-end readout remains the same, the bunch spacing reaches
 25 ns, twice as fast as Run I.
- Monitoring the data quality:
 - This involves making sure the physics won't degrade with radiation
 - More <u>automated</u> checks and <u>trending</u> → machine triggered alarms
- A gracefully aging detector:
 - The measurements in Run I indicate that the detector is more resistant than designed for.
 - In Run I: ~40% of the expected luminosity of the total expected till the end
 of Run II.
 - Careful operation, attention to cooling and annealing.
- Ion-Ion Collisions
 - Low rate but high occupancies
 - → First time operating the VELO with *Heavy Ion collisions*.

Timing

 Pulse shapes measured with beam. Each sensor is optimised for equal spill-over between bunch crossings
 Average pulse shape: Landau bins

Pulse shape studies

- The 25 ns bunch spacing could introduce spill-over tracks.
- The analogue pulse of the front-end chips was optimized for fast readout and signal to noise.

Spill over effects on Tracking

 The number of spurious tracks "spilling over" bunch crossings is negligible.

Monitoring

Radiation Damage

- Study the damaging of the current detector is a perfect lab for our Upgrade
 - Non Uniformity is unique to the VELO.
 - Keep it cold. Avoid prejudicial annealing
 - Observed loss of collected charge due to bulk damage
- Radiation damage is measured with a few approaches, mainly:
 - Constant IxV curves and occasional IxT measurements Monitor currents and compare to expected values – Avoid thermal runaway
 - Measurement of the Collected Charge. This dictates the operational voltage values, set for the most irradiated regions – Regular HV scans taken with beam
- Unforeseen effects double metal layer

Expected increase in fluence = C/Radius^{exp}

Collected charge

Hit resolution

Hit Resolution as function of track angle

As function of strip pitch, 9 degrees

Impact parameter Resolution

2011 Data. >1fb-1 exposure

Degradation due to
Radiation damage still **negligible**2012 and 2015 Data.

>3.41fb-1 integrated

Primary Vertex resolutions

 Although some degradation was observed through Run I, High level physics quantities remain with good resolution

Monitoring radiation damage

- Detector currents
- Charge Collection Efficiency

Currents at 150 V – approx. 19 μA/fb⁻¹

Currents as function of time (150 V)

Charge Collection efficiency – HV scans.

 Few sensors are scanned the others act as a telescope

New data taking scheme using the Buffering on the LHCb HLT nodes was able to provide ~1 Mtracks/step. The scan takes 1 hour for ~ 65 steps.

Effective Depletion voltage is determined, Op. Value set for the most irradiated part of the sensor

Prediction based on the Hamburg Model

Expectations for Run II

Cluster Finding Efficiency

Cluster Finding Efficiency

-30

98

96

94

92

90

88

86

40

Y [mm]

Second Metal Layer Effects

- Sensors are AC coupled. One metal layer couples to the strip and the other routes the signal to the periphery of the sensor.
- Routing lines are perpendicular to the strips in R-sensors and parallel to the φ-strips.

Losing Charge

Rate of degradation, seems to have slowed down.

Ion Run

- A Careful assessment was performed to take into account the safety of the detector.
- Relatively small total dose taking into account lower cross sections.
- The increased number of MIPs did not pose a significant danger to the front-ends (SEUs).
- Checked the number of heavy nuclear fragments in simulation
 → neglible in acceptance.
- Concluded that operation would be safe even with detector closed.

Ion-Ion Collistions

- First fills had very careful power on procedure
- The closing counts on vertices to center the detector → procedure was much slower than usual due to lower rate.
- The multiplicity "seems" to have reached the physical limit of the DAQ boards.
- The reconstruction

is very difficult for too high multiplicities. p-p 5 TeV Reference Run 10^{-1} $\mathcal{L} \sim 6 \, \mu b^{-1}$ Ion-Ion 5 TeV/nucleon \approx 2 nb⁻¹ of p-p 10^{-2} 10^{-3} >25% Occupancy @ 45 kClusters 10-4 10000 20000 30000 40000 50000 N Velo Clusters

Conclusions

- Vertex locator is a radiation hard detector taking data <u>successfully</u> across LHC Run I and Run II.
- Detector optimized for 25 ns bunch spacing.
- The detectors are kept cold as much as possible to avoid annealing.
- Non uniform radiation exposes the sensors to very high damages
 → constant monitoring of the currents to avoid thermal runaway.
- Operational voltages are expected to be within the designed range up to 8 fb⁻¹ with full depletion, now at 3.7 fb⁻¹
- First attempt to take data with lon-lon collisions in 2015. Successful operation of the detector.
- Expect more radiation damage in the upgrade... see K.Hennessy's talk: http://indico.cern.ch/event/391665/session/5/contribution/382

Back up slides

Monitoring

- Dedicated interface to provide Data Quality assessment per run
- Automated scripts run over freshly taken data.
- Results are saved and trended over time.
- Can be accessed from the web.
 - That should have all the functionality of the executable interface
 - Same meta-analysis and code framework
- Computation of "scores" for the difference between the run and a reference.
 - Generation of warnings and alarms depending on the score.

We have 2 of them!

Fully Functional and Tested spare sensors and frontend electronics

We have 2 of them!

• Fully Functional and Tested spare sensors and frontend electronics

