

State of the art time resolution in TOF-PET detectors for various crystal sizes and types

<u>S. Gundacker</u>, A. Benaglia, M. T. Lucchini, M.V. Nemallapudi, K. Pauwels, E. Auffray and P. Lecoq *CERN*

F. Acerbi, A. Ferri, A. Gola, G. Paternoster, C. Piemonte *FBK*

This work was carried out in the frame of the TICAL ERC Grant 338953, SUBLIMA under Grant 241711 and the Crystal Clear Collaboration

Positron Emission Tomography (PET)

In ¹⁸F-Fluorodeoxyglucose (FDG) the radioisotope Fluorine (¹⁸F) emits a positron.

Positron range in FWHM is 0.22mm. Half life of FDG is 110min.

Instead of ¹⁸F as well possible: ¹¹C, ¹³N, ¹⁵O, ⁶⁸Ga,⁸²Rb

Time of flight in PET

Without timing the positron emission could have happened anywhere along the line of response (LOR).

Time of flight in PET

Time of flight can effectively confine the positron emission point.

Timing is determined by the full width at half maximum (FWHM) of the coincidence time resolution (CTR).

Time of flight in PET

Components of the radiation detector

14th VCI, 18 February 2016

Coincidence time resolution (CTR) measurements

NUV SiPM from FBK: 3x3mm², 40um SPAD size, 60% fill factor coupled to 2x2x3mm³ and 2x2x20mm³ LSO:Ce codoped 0.4%Ca with Meltmount

Temperature for measurements stable at 15°C.

S. Gundacker et.al, JINST, August 2013. JINST 8 P07014

FBK NUV (3x3mm², 40µm)

Measurements done at CERN with FBK-NUV SiPMs:

Crystals: 2x2x3mm³LSO:Ce codoped 0.4%Ca

M. V. Nemallapudi et.al, Phys. Med. Biol. 60 (2015) 4635

FBK NUV (3x3mm², 40µm)

Measurements done at CERN with FBK-NUV SiPMs:

M. V. Nemallapudi et.al, Phys. Med. Biol. 60 (2015) 4635

FBK new development: NUV - high density (HD) (4x4mm², 25µm)

FBK NUV-HD (4x4mm², 25µm)

HD (high density)

 \rightarrow high fill factor and thus higher PDE

Smaller cell size (25µm)

→ higher overvoltage due to less correlated noise and thus higher PDE Good single photon time resolution of 180ps FWHM despite large $4x4mm^2$ area

A. Ferri, et.al "100ps coincidence time resolution with LYSO coupled to NUV-HD SiPMs", NSS-MIC, 2015

FBK NUV-HD (4x4mm², 25µm)

Crystal length influence on the CTR

NUV-HD with various crystal lengths

Measured with NUV-HD (25µm SPAD size, 4x4mm² device size)

LSO:Ce codoped 0.4% Calcium

Measured with NUV-HD (25µm SPAD size, 4x4mm² device size) 2x2mm² crystal cross section, T=15°C

LSO:Ce:Ca versus LYSO:Ce

Measured with NUV-HD (25µm SPAD size, 4x4mm² device size) 2x2mm² crystal cross section, T=15°C

Crystal cross section influence on the CTR

Crystal cross section

Going from $2x2mm^2$ to $3x3mm^2$ crystal cross section $\rightarrow \sim 8ps$ CTR deterioration $4x4mm^2$ cross section did not cover whole SiPM (light loss)

Crystal cross section

No CTR difference between 1x1mm² and 2x2mm² crystal cross section

14th VCI, 18 February 2016

Confirmation for different lengths and types

LYSO:Ce		crystal length			
		3mm	5mm	20mm	
crystal cross section	1x1mm ²	87ps		132ps	} ~ 8ps FWHM
	2x2mm ²	87ps	95ps	130ps	
	3x3mm ²	95ps	105ps	137ps	
	4x4mm ²	111ps			

Measured with NUV-HD (25µm SPAD size, 4x4mm² device size), T=15°C

Possible reasons for worse CTR with increased crystal area

Possible reasons for increased CTR

- \rightarrow SPTR increase due to increased transit time spread with bigger area
- \rightarrow Light output of crystal could change with section
- \rightarrow Increased optical crosstalk probability

SPTR NUV-HD with mask

→ Single photon time resolution (SPTR) increase due to increased transit time spread with bigger area

Measured with NUV-HD (25µm SPAD size, 4x4mm² device size), T=15°C

14th VCI, 18 February 2016

Similar light output for increasing crystal area

- → SPTR increase due to increased transit time spread with bigger area
- \rightarrow Light output of crystal could change with section

Measured with Hamamatsu PMT R2059

Crosstalk increase with crystal cross section

- → SPTR increase due to increased transit time spread with bigger area
- \rightarrow Light output of crystal could change with section
- \rightarrow Increased optical crosstalk probability

Preliminary test on statistics influence

- \rightarrow SPTR increase due to increased transit time spread with bigger area
- \rightarrow Light output of crystal could change with section
- \rightarrow Increased optical crosstalk probability
 - excess noise factor in statistics

ith crosstalk probability given by:

$$P \!=\! \exp\left(-i \!\cdot\! \frac{1}{\tau_{\scriptscriptstyle XT}}\right)$$

ith crosstalk modelled as Gaussian with:

 $\mu = \mu_0 + SPTR * \sqrt{i}$ $\sigma = SPTR * \sqrt{i}$

time delay and smearing increases

Scintillator material: influence on the CTR

Crystal types tested

GAGG:Ce, GAGG:Ce:Mg and LSO:Ce:Ca

2x2x10mm³ crystal size, NUV-HD @ 12.5V overvoltage, T=15°C

M. T. Lucchini et.a. "Effect of Mg^{2+} ions co-doping on timing performance and radiation tolerance of Cerium doped $Gd_3Al_2Ga_3O_{12}$ crystals", NIMA, Available online 11 February 2016, accepted and in press

LuAG:Pr and LuAG:Ce

S. Gundacker, et.al "Measurement of intrinsic rise times for various L(Y)SO and LuAG scintillators with a general study of prompt photons to achieve 10ps in TOF-PET", IOP PMB, in press

2x2x5mm³ LSO:Ce 0.4% Ca, coupled to NUV-HD (4x4mm², 25µm) in testbeam with 150GeV muons

Timing layer for high luminosity

Future high luminosity colliders demand strategies for event pile-up.

One possibility, calorimeter with timing layer (time resolution in the order of 20ps sigma needed):

- –) 2x2x5mm² LSO:Ce codoped 0.4%Ca crystal give 83ps FWHM CTR in lab with 511keV.
- -) Minimum ionizing particle deposits ~1MeV/mm
 - → 27ps FWHM CTR expected in testbeam with minimum ionizing particles {83 ps / √(5 MeV / 511 keV)}

or in sigma single time resolution: 27ps/3.33=8ps

-) timing achievable with 100% detection efficiency

Testbeam setup in H2 (CERN)

Time walk correction

Non-negligible landau fluctuations

Small beam divergence and misalignment

Time walk correction of the landau fluctuations

A. Benaglia et. al. "Detection of high energy muons with sub-20 ps timing resolution using L(Y)SO crystals and SiPM readout", NIMA under review

10ps time resolution with mips

A. Benaglia et. al. "Detection of high energy muons with sub-20 ps timing resolution using L(Y)SO crystals and SiPM readout", NIMA under review

Conclusions

- Best CTR of 73ps FWHM for 2x2x3mm³ and 117ps for 2x2x20mm³ achieved with LSO:Ce codoped Ca
- Standard LYSO:Ce achieves 130ps FWHM for 2x2x20mm³
- CTR deterioration with larger crystal area starts at 3x3mm² and is relativley small (~8ps) --> needs further investigation (6x6mm²)
- Codoping with Ca or Mg improves scintillation decay- and rise-time, and thus timing significantly.
- Test-beam results showed results of 10ps (sigma) (33ps FWHM CTR) with minimum ionizing particles and 5mm long crystals

<u>S. Gundacker</u>, A. Benaglia, M. T. Lucchini, M.V. Nemallapudi, K. Pauwels, E. Auffray and P. Lecoq *CERN*

F. Acerbi, A. Ferri, A. Gola, G. Paternoster, C. Piemonte *FBK*

This work was carried out in the frame of the TICAL ERC Grant 338953, SUBLIMA under Grant 241711 and the Crystal Clear Collaboration

Backup slides

"Tachyon" TOF-PET with 314ps

Single-ring Lutetium Oxyorthosilicate (LSO) based camera designed to obtain significantly better timing resolution than the ~550ps found in present commercial TOF cameras. Incorporating the 314ps TOF reduces the standard deviation of the contrast by a factor of about 2.3.

No timing information is incorporated in the reconstruction CTR of 314ps FWHM is incorporated in the reconstruction

Q. Peng et. al. "Performance of the Tachyon Time-of-Flight PET Camera"

Measured Cherenkov yield in LuAG:Pr

S. Gundacker, et.al "Measurement of intrinsic rise times for various L(Y)SO and LuAG scintillators with a general study of prompt photons to achieve 10ps in TOF-PET", IOP PMB, in press

14th VCI, 18 February 2016

FBK NUV-HD (4x4mm², 25µm)

Baseline-shift "filtering"

 \rightarrow Increased crosstalk probability:

- more baseline noise and thus time pick-up jitter

Measured at 12.5V SiPM overvoltage, T=15°C

Baseline-shift "filtering"

 \rightarrow Increased crosstalk probability:

- more baseline noise and thus time pick-up jitter

More refined filtering (pole-zero) does not improve CTR anymore (optimized already)

"Intrinsic" CTR performance of the setup

Signal from one crystal + SiPM was split into 2 NINO input channels

14th VCI, 18 February 2016

Data acquisition: time resolution

–) Signal from one crystal + SiPM was split into 2 NINO input channels

-) Gives the time resolution of the Caen digitizer (acqusition)

Measured ~7 ps of intrinsic resolution in coincidence, sets the limit only due to data acquisition.

=> 5ps sigma of single channel

5*3.33 = 17ps FWHM CTR, agrees with 511keV measurements in lab.

A. Benaglia et. al. "Detection of high energy muons with sub-20 ps timing resolution using L(Y)SO crystals and SiPM readout", NIMA under review