SoLid: An innovative antineutrino detector for searching oscillations at the SCK•CEN BR2 reactor

Yamiel Abreu for the SoLid collaboration

yamiel.abreu@uantwerpen.be

VCI2016
The 14th Vienna Conference on Instrumentation 16th February, 2016

SoLid

Y. Abreu (UA) SoLid@VCl2016 16 Feb 2016 1 / 21

Outline

- The Reactor Antineutrino Anomaly
- The SoLid experiment
- Submodule 1 design and performance
- Outlook of the SoLid detector

Y. Abreu (UA) SoLid@VCI2016 16 Feb 2016 2 / 21

The Reactor Antineutrino Anomaly

K.N. Abazajian, et al., arXiv:1204.5379v1, 2012

- Previous experiments at short baselines are systematically shifted from the expected values of $\overline{\nu}_e$ flux.
- New experiments at shorter distances are required
- A possible hint for new physics ...

3 / 21

The SoLid Experiment

- Search for short baseline neutrino oscillations
 - Precise position and energy measurement
 - ► Existence of a fourth massive "sterile" neutrino?
- \bullet Precise measurement of the $\overline{\nu}_e$ spectrum of ^{235}U from 5.5 m @ BR2
- Demonstrate its applicability to reactor monitoring safeguard.
- Doing short baseline measurements is particularly challenging due to the background conditions (muon induced + reactor)

Y. Abreu (UA) SoLid@VCl2016 16 Feb 2016 4 / 21

BR2 reactor at SCK•CEN

- Research reactor
 - Highly enriched in ²³⁵ U
 - Neutrino flux ($\sim 10^{19}
 u/s$)
 - Compact core (d \sim 50 cm)
 - ► Well shielded core (low background)
 - ► Thermal power between 40 80 MW
- Reactor hall allows baselines from 5.5 to 10 m
- 150 days per year duty cycle
 - Reactor off data for background estimation and subtraction

Detection principle

Detection through the Inverse Beta Decay (IBD)

$$\overline{
u}_e + p \rightarrow e^+ + n$$
 $n + ^6 Li \rightarrow {}^3H + \alpha + 4.78 MeV$

Composite scintillator

- PVT Cubes of 5x5x5 cm + ⁶Li:ZnS(Ag).
- Cubes are optically separated (Wrapped with Tyvek)

Lid@VCI2016 16 Feb 2016 6 / 21

Detector Submodule 1 (SM1): 2014-2015

- 16 x 16 x 9 PVT Cubes + ⁶Li:ZnS(Ag).
- 9 detector frames of Al with HDPE internal reflectors

- High segmentation
 - ► Spatial resolution of IBD vertex
 - Allow exploitation of IBD event topology
 - Background rejection
- Light collected with WLS fibers and multi-pixel photon counters (MPPCs) Hamamatsu S12572-050P

- 288 readout channels
- $\approx 290 \text{ kg}$

Y. Abreu (UA) SoLid@VCI2016 16 Feb 2016 7 / 21

Detector Submodule 1 (SM1): 2014-2015

Detector Submodule 1 (SM1): 2014-2015

- ADC: 62.5MHz rate (16 ns sample)
- Light yield ~ 25 PA/MeV (X+Y)
- Energy resolution of 20 % at 1 MeV
- 50 ns coincidence window (X&Y)
- Threshold at 0.6 MeV
- Trigger algorithms
 - ► Trigger by threshold and coincidence
 - Random trigger

SM1 run at BR2

- Data from Dec 2014 to March 2015
 - ▶ 3 4 days Reactor on
 - $ightharpoonup \sim 1$ month Reactor off

- Detector calibration
 - 60 Co, ¹³⁷Cs and cosmic muons for energy calibration
 - ► AmBe and ²⁵²Cf for neutron calibration

Detector particle discrimination

Particle discrimination capabilities based on the pulse shape difference between the ⁶Li:ZnS(Ag) and PVT.

Prompt-delayed coincidence

11 / 21

Neutron Identification Algorithm

- Particle identification based on the pulse shape.
 - Integral / Amplitude
- The ⁶Li:ZnS neutron discrimination power is confirmed.

Detector response to cosmic muons

- Muon tracks can be reconstructed due to detector segmentation
 - ► In-situ calibration and monitoring with dE/dx

 $R_{\mu} = 69.42 \pm 0.01 \text{(stat) Hz}$

16 Feb 2016

Background rejection capabilities

Muons passing the detector making fast neutrons:

 Correlation between muons and neutrons is observed

- Rejection of muon correlated background
 - Muon Veto cut

SoLid particular cut: Δr can be chosen to retain most of the signal and cut hard on Accidental backgrounds (B_{Acc})

 Δr for B_{Acc} (Data) and neutrinos (Simulation)

Experimental set up

Improvement in light yield and readout

	Setup	Description
SM1	wrc2	 Thin tyvek Single cladding fibre Single readout Light yield: 25 PA/MeV (Cube)
Solid Phase 1	MPC2 MPC1	 Thick tyvek Multi cladding fibre Double readout Light yield increase in ~ x1.8

17 / 21

Y. Abreu (UA) SoLid@VCI2016 16 Feb 2016

- Double electronic readout compared to SM1
 - Reduce dark count rate (noise)
 - ► Increase the light yield
 - ▶ Better energy resolution: ~ 14 - 16 % at 1 MeV
 - ▶ 3200 readout channels
- Trigger algorithms
 - Neutron waveform trigger with zero suppression readout
 - ► Threshold trigger
 - External trigger

- The SoLid detector will be constructed in a modular way during 2016.
- Data will be taken in search mode over one year, starting on the second half of 2016.

Summary and Outlook

- The SoLid submodule 1 run has been successful
 - Excellent neutron ID
 - Probe of background rejection capabilities
 - ► Data analysis is still ongoing
- Improved detector design for Phase 1.
 - Better detector sensitivity and energy resolution
 - ► Improvement on trigger algorithm
 - ► A very sensitive search for antineutrino disappearance using a new generation of compact detector is expected
- Phase 1 construction will be done in a modular base
 - ▶ Planned to run in search mode over one year, starting on the second half of 2016.

SoLid Collaboration

4 Countries, 10 Institutions, \sim 50 people

