

Low Energy Proton Detector for the **PENeLOPE Experiment**

D. Gaisbauer^a,

Precision experiments in particle- and astrophysics with cold and ultracold neutrons

Project Description

Ultra-Cold Neutrons (UCN)

kinetic energy below 300 neV

PENeLOPE

- Precision Experiment on Neutron Lifetime Operating with **P**roton **E**xtraction
- lossless storage of UCN in magneto-gravitational trap

F. J. Hartmann^a, I. Konorov^a, S. Paul^a,

R. Picker^b, W. Schreyer^a, D. Steffen^c, R. Stoepler^a, C. Tietze^a

- **Technische Universität München, Germany (a)**
 - **TRIUMF, Vancouver, Canada (b)**
 - **(C) CERN, Genève, Switzerland**

Detector Requirements

Energy of Protons

– 30 keV

High Voltage Environment

detector and electronics on -30 kV

Frontend Communication

Switched Enabling Protocol (SEP)

- time-division multiplexing transport layer protocol
- star like optical network (1:n) or point to point connection (1:1)
- readout in Round-Robin manner
- determined latency for time critical messages

- neutron lifetime derived from neutron and proton counting —
- aspired precision 0.1 s —

Proton Detection

- charged decay particle extraction and detection —
- extraction efficiency 69% (protons) and 37% (electrons) —

Magnetic Field Environment - 0.6 T

Low Temperature

- 77 Kelvin
- low heat input

Vacuum Compatibility

- 10⁻⁸ mbar
- low outgassing

Large Area

- 0.23 m²

98% link utilization efficiency for PENeLOPE

Higher level protocols

- data transmission
- IPBus (control of complete DAQ electronics)
- time distribution
- JTAG interface

Transmission Time [µs]	Efficiency [%]	
25000	99,93	
10000	99,84	Total link utilization efficiency of SEP for different times a slave can transmit data
1000	98,42	
500	96,90	
100	86,20	

Trigger Algorithm

FPGA Signal Detection Algorithm

- "Real-time" pedestal calculation: Averaging over N_{avg} samples
- calculating sigma noise over N_{avg} samples: calculating quadratic deviation from mean value
- signal detection: If n_s consecutive samples > pedestal $+ \chi_f \cdot \sigma$
- trigger threshold configurable to exactly defined signal/noise ratio
- each channel is treated by itself

PENeLOPE Proton Detector Readout

Complete Readout Scheme

- 14 SDU blocks with each 96 channels
- 1:16 passive optical splitter
- slow control card controlling the bias of the APDs
- all electronics inside the cryostat on 30 kV
- Network Acces Controller (NAC) outside of cryostat to further process data and establish connection to PCs

Avalanche Photodiodes

- Hamamatsu S11048
- 6.8 x 14 mm² active area
- 9 x 18 mm² size
- terminal capacitance of 220 pF
- no epoxy cover
- operational voltage of 240 to 270 V
- liquid nitrogen cooled to 77 K

Preamplifier, Shaper and ADC

- CR/RC shaper architecture with 1 µs time constant
- long time constant possible due to low trigger rate
- ADC card for 24 channels each using a 12 bit SAR ADC

Signal Detection Unit (SDU)

- 1 MHz sampling rate
- Xilinx Spartan 6 LX150T
- detects events and formats the ____ signals provided by the ADCs

Test Results

Beam results

- proton beam test at the paff accelerator
- 1.29 keV energy resolution at 300 K
- usable with proton energies downto about 15 keV

30 MHz clock domain 120 MHz clock domain 30 MHz clock domain SPI instantiator async FIFO RWSM async FIFO SPI master -----MISO-−trigger -pedestal 96 channels MUX SDU 96 channels SEP management async FIFO module async FIFO RWSM \rightarrow -----MISO-SPI master

