

[Electron energy spectrum]

2νββ

region below 2.6 MeV

2000 3000

Kinetic energy of 2 electrons (keV)

Development of CANDLES detector to search for neutrino-less double beta deca of ⁴⁸Ca

Sei Yoshida (Osaka Univ.) for the CANDLES Collaboration

1. Double Beta Decay

Neutrino less double beta decay $(0v\beta\beta)$ occurs when neutrino is Majorana particle. This process is beyond the standard model and observation of $0\nu\beta\beta$ proves the following physical laws;

- Majorana nature of neutrino
- Lepton number violation
- **Neutrino mass and its hierarchy**
- Energy spectrum of $0\nu\beta\beta$ has a peak at Qvalue. Because $0\nu\beta\beta$ is an extremely rare phenomenon, low background (BG) condition is important.
- > 48Ca has largest Q-value (4.27MeV) among all the $0\nu\beta\beta$ nuclei. Taking this advantage, we target background free measurement!!

3. Background Study

1. Pulse shape discrimination

• Decay time of β / α in CaF2 is different as shown in the figure. In CANDLES, pulse shape discrimination (PSD) is used for BG rejection.

- Discriminate β / α using "Shape Indicator" PRC67, 014310 (2003).
- \times Most of LS events are rejected by hardware and χ^2 pulse shape analysis.
- Here we discuss a BG study by PSD with 36 days 1st phase data.

2. Th-chain backgrounds

- ²³²Th chain produces two of three main BGs.
- → Select ²³²Th-least crystals and apply PSD.

Two Th-chain BGs in Q-value region.

By double pulse rejection and α rejection, ²¹²Bi-²¹²Po is ignorable. (>99% is rejected) Time difference between

BG2. 208 TI (Q $_{\beta} = 5.0 \text{ MeV}$)

- Tag ²¹²Bi (α-ray) by PSD, then apply veto-time to the ²¹²Bi-detected crystal for 12 minutes $(4 \times T_{1/2})$
- BUT, due to long decay time of ²¹²Po, rejection efficiency is now only ~60% and further improvement of PSD is necessary.

²¹²Bi-²¹²Po candidates Ơ distribution Half-life = 152 ± 27 sec 1600 1800 200 Tirlie(S&&)

3. Neutron capture γ BG \rightarrow (n, γ)

fit range 🕻

00 5000 6000 7000 8000 900010000

Rock (MC) SUS (MC)

Energy [keV]

• γ-rays from neutron captures on materials surrounding detector (Stainless tank, rock) can be dominant BGs.

Strategy of (n,γ) study

Neutron source run (²⁵²Cf)

- For better understanding of (n,γ) reaction
- 1 hour of source run = 1 year of normal run
- Detector simulation of (n,γ)
- Geant 4.9.6.p02
- Generate γ -rays uniformly in stainless or rock according to (n,γ) spectrum.

- Various cut efficiency for 0vββ analysis can be
- (n,γ) BG in Qββ is evaluated from MC spectrum.

2. CANDLES Detector

Schematic view of the detector

 CANDLES is a project to search for neutrino less double beta decay of ⁴⁸Ca with CaF₂ scintillators.

- The CANDLES III (U.G.) detector is currently running at the Kamioka underground observatory, Japan.
- 96 pure CaF₂ crystals (305kg)
- 62 photo-multipliers (13" & 20" PMTs)
- ~ 1000 p.e./MeV after cooling the detector
- 4π active shielding by liquid scintillator (LS)
 - Difference of scintillation time constant $CaF_2 \sim 1000 \text{ nsec} / LS \sim 20 \text{ nsec}$ Pulse shape analysis of LS and CaF₂ signals

Energy Calibration

- Energy scale is calibrated using ⁸⁸Y γ-ray source (1.84 MeV): Regular calibration.
- •The linearity is checked using external γ -rays (e.g. 2.62 MeV of 208 TI) and neutron capture γ (e.g. 9.0 MeV of ⁵⁸Ni, 3.5MeV/5.0MeV of ²⁸Si) calibration.

4. Upgrading Detector

1. Cooling system installation

✓ CaF₂ scintillator is known that its light output increases about 2% by lowering. 1°C temperature. The cooling system has been installed in the Lab...

2. Neutron and Gamma-ray shield

→ Target # of BGs : < 0.5 events

We are installing neutron and γ -ray shield to reduce external (n,γ) backgrounds !! B shield ~5mm

- Neutron shield: B-loaded sheet on the surface of detector

- γ-ray shield : Pb (7 ~ 12 cm)

5. Development of Scintillating bolometer

- In order to explore the Inverted hierarchy and further normal hierarchy region, we need two improvements:
 - Realizing highly enriched ⁴⁸Ca, and ton-scale detector
 - Much better energy resolution to avoid 2vββ background events
- In order to achieve good energy resolution, we are planning to develop the scintillating bolometer. 4.468×10^9 y

BG from CaF₂ internal radioactivities can be rejected by

Improved energy resolution

- Crystal segmentation
- Quenching effect of scintillation

$Q_{\alpha} = 4270$ **163.0 4**0.078% **4**0 0.37 ns 2+ 0°. **0 _**79.0% *1.0*

²³⁸₉₂U

New BG candidate

- ✓ Q-value of 238 U (α -decay) : 4270 keV
- ✓ Q-value of ⁴⁸Ca : 4267.98(32) keV
- Quenching effect of α -particles in scintillators can discriminate the ²³⁸U α -BG.

Collaboration Institutions

◆大阪産業大学 OSAKA SANGYO UNIVERSITY

Data spectrum is well reproduced by MC.

- checked with source run.