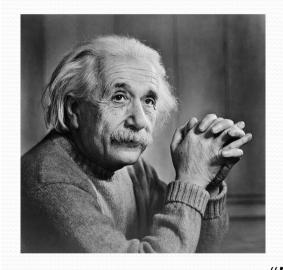
Detectors Evolution for Gravitational Waves Observations


F. Frasconi – INFN Pisa 14th Vienna Conference on Instrumentation Vienna, February 14-19, 2016

Gravitational Waves

- According to the Einstein's theory of General Relativity (1915), Gravitational Waves (GW) are perturbations of the "space-time" metric traveling in the Universe at the speed of light;
- They are expected to be emitted by astrophysical processes in which accelerated coherent motions of large masses take place (supernova explosions, pulsars, black holes, etc.);
- The aim of modern detectors (ground based interferometric detectors - ITF) is the direct observation of GW together with the possibility to localize their source in the sky (detectors network).

GW interaction

 When such a wave interacts with an object, this is "stretched" and "compressed" in alternative way

February 19, 2016

F. Frasconi - INFN Pisa

2

How can GWs be produced?

Two compact objects in close orbit

Deform space, and objects embedded in it, at a frequency twice their orbital frequency

The deformation is measured by the "strain", $h = \Delta L / L$

h is inversely proportional to the source distance

Ripples in the cosmic sea

 Linearized Einstein equations admit wave solutions as perturbations to a background geometry

$$\mathbf{G} = \frac{8\pi G}{c^4} \mathbf{T}$$

$$\mathbf{g} = \boldsymbol{\eta} + \mathbf{h} \text{ with } \left| h_{\mu\nu} \right| << 1 \implies \left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \right) h_{\mu\nu} = 0$$

• Gravitational Waves:

transverse space-time distortions $h(z,t) = e^{i(\omega t - kz)} \begin{vmatrix} 0 & h_+ & h_\times & 0 \\ 0 & h_\times & -h_+ & 0 \end{vmatrix}$ propagating at the speed of light, described by 2 independent polarization

$$\mathbf{h}(z,t) = e^{i(\omega t - kz)} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & h_{+} & h_{\times} & 0 \\ 0 & h_{\times} & -h_{+} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Target GW amplitude

- Efficient sources of GW must be asymmetric, compact and fast;
- GW detectors are sensitive to amplitude h: 1/r attenuation!

$$h_{\mu\nu} = \frac{2G}{c^4} \cdot \frac{1}{r} \ddot{Q}_{\mu\nu}$$

Target Amplitude: coalescing NS/NS in the Virgo cluster (r ~ 10 Mpc)

h~ 10⁻²¹

Fist Attempt: the resonant bars

Joseph Weber (~1960)

Resonant bar suspended in the middle

- The passage of GW having a frequency in the range of the bar resonance, excites its longitudinal mode;
- A-coupled smaller-mass would vibrate with a larger amplitude

GW Detectors: the resonant bars

Narrow band Detectors for a feeble signal

F. Frasconi - INFN Pisa

The indirect proof of GW existence: PSR 1916+13

- This binary system is loosing energy (gravitational waves emission) as predicted by General Relativity: orbital period decreases;
- Coalescence of the two bodies within 400 million of years;
- Nobel Prize on Physics 1993:
 R. A. Hulse e J. H. Taylor

The Interferometric Detectors

 GW impinging on masses distribution with "L" shape induce a spacetime deformation;

 The space-time strain can be measured by using light;

 A very complex instrument based on the working principle of a Michelson interferometer.

The broadband GW Interferometers

The detector is sensitive to he the Gravitational Wave strain amplitude (a GW impinging on the plane of a suspended interferometer stretches one arm compressing the other one alternatively)

The detector sensitivity is expressed in terms of the amplitude spectral density of the detector noise referred to its input

H(f) $[(Hz)^{-1/2}]$

Target Sensitivity of ITFs

Mirror displacement hit by GW:

- Coalescing binary NS system @ Virgo cluster: h~ 10-21
- Interferometer arm length L on Earth: a few km (103m)
- Need to measure: $\Delta L \sim 10^{-18}$ m

ITFs of the 1st Generation and Network

February 19, 2016

F. Frasconi - INFN Pisa

Importance of a detectors Network

- False alarm rejection require coincidence;
- Triangulation allows to pinpoint the source;
- The Network allows to deconvolve detector response and signal wave form -> measurement of the signal parameters;
- Longer observation time better sky coverage.

GW Sources

Coalescing Binary Systems

 Neutron stars, low mass black holes, and NS/BS systems

- Stochastic, incoherent background
- unlikely to detect,
 but can bound in the
 10-10000 Hz range
 F. Frasconi INFN Pisa

'Bursts'

- galactic asymmetric core collapse supernovae
- · cosmic strings
- . 333

Continuous Sources

- Spinning neutron stars
- probe crustal deformations, 'quarki-ness'

Achived Sensitivities: 1st Generation ITF

- LIGO and VIRGO reached the design sensitivity;
- Robust and reliable instruments realized.

Some Scientific Papers

PHYSICAL REVIEW D 85, 082002 (2012)

Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs and 3

THE ASTROPHYSICAL JOURNAL, 760:12 (18pp), 2012 November 20

doi:10.1088/0004-637X/760/1/12

© 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3

PHYSICAL REVIEW **R 85,** 122007 (2012)

All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run

THE ASTROPHYSICAL JOURNAL, 737:93 (16pp), 2011 August 20 © 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.

doi:10.1088/0004-637X/737/2/93

BEATING THE SPIN-DOWN LIGHT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR

An upper limit on the stochastic gravitational-wave background of cosmological origin

The LIGO Scientific Collaboration* & The Virgo Collaboration*

 $\Gamma/$

The Advanced Interferometers

Optical layout: AdV

February 19, 2016

F. Frasconi - INFN Pisa

Evolution of the AdV Interferometer Sensitivity

- Main changes with respect to VIRGO:
 - larger beam
 - heavier mirrors
 - higher quality optics
 - thermal control of aberrations
 - 200W fiber laser
 - Signal Recycling
- Vibration isolation by VIRGO Superattenuators:
 - performance compliant with new requirements
 - wide experience with commissioning at low frequency (extended detection bandwidth at low frequency)

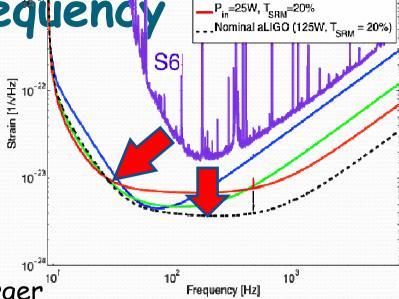
Standard filters

Noise budget: high frequency

- Dominated by laser shot noise.
- Improved by increasing the power:
 - > 100W input, ~1 MW in the cavities.
- Requires:
- New laser amplifiers (solid state, fiber);
- Heavy, low absorption optics (substrates, coatings);

- Sophisticated systems to correct thermal

aberration.



P_{in}=25W, T_{SRM}=100%

Noise budget: mid frequency

- Dominated by thermal noise of:
 - Mirror coatings
 - Mirror Suspensions
- Reduced by:
- An improved optical configuration with larger beam spot;
- Test masses suspended by fused silica fibers (low mechanical losses);
- Mirror coatings engineered for low losses

P_{in}=25W, T_{SRM}=100%

 P_{in} =25W, T_{SRM} =50%

Noise budget: low frequency

Dominated by seismic noise;

 Managed by suspending the mirrors from complex vibration isolators

- VIRGO Superattenuators (1st Generation)

- LIGO active system

 Technical noise sources of different nature are the real challenge in this frequency range;

 Ultimate limit for ground based detectors: gravity gradient noise.

AdV Sueperattenuators

- The Superattenuator (SA) is the mechanical system adopted to isolate the optical components from seismic activities (local disturbances). It is based on the working principle of a multistage pendulum;
- Hybrid system: active control below 4 Hz and passive attenuation starting from 4 Hz;
- Detection bandwidth extended in the low frequency range.

aLIGO Seismic Isolation

KAGRA: underground detector

- Underground ITF located in the Kamioka mine (Japan) with 3 km orthogonal arms:
 - reduced seismic noise (about a factor 50 @ 10 Hz) and gravity noise
 - simplified seismic isolation system;
- Second phase: cryogenic cooling of test masses:
 - reduced thermal noise

KAGRA

KAGRA Vibration Isolation

 KAGRA SAS (Seismi System) is mounted t tunnels:

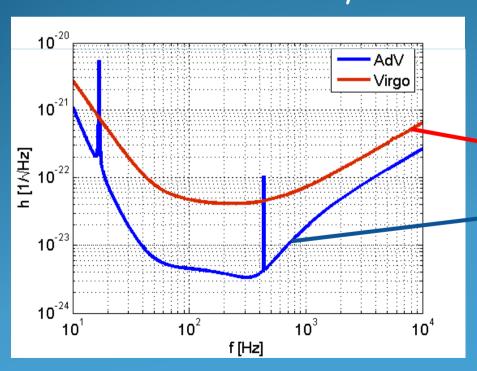
• New features:

- Geometric anti-spring (Gireplace Magnetic anti-sprin

- Magnetic damping stage

- Compact pre-isolator stag

Cryostat in the Fabry-Fa


February 19, 2016 F. Frasconi - INFN Pisa

Advanced Detectors

• The upgrades to advanced instruments (2nd generation) are almost completed. They will be in commissioning phase in 2016;

Advanced detectors are promising an improvement of a

factor 10 in sensitivity.

Credit: R.Powell, B.Berger

Advanced Detectors Sensitivity Goals

- Advanced detectors are tunable for different sources;
- Typical benchmarks include BNS and 10+10 BBH.

The Advanced Detectors Network

February 19, 2016

F. Frasconi - INFN Pisa

GW Observations: the future

- The aim of the ET Project (Einstein Telescope) is the realization of a large scale GW Observatory in Europe (3rd generation detector);
- The ET design built up a pan-European community (ET Science Team) supporting the project;
- ET conceptual design study document delivered in 2011.

The Research Infrastructure

 The ET research infrastructure is a giant scale GW interferometer, cryogenic and underground.

The First GW Detection

H1 20 ms light travel time L1

September 14, 2015 at 11:50:45 in Central European Time

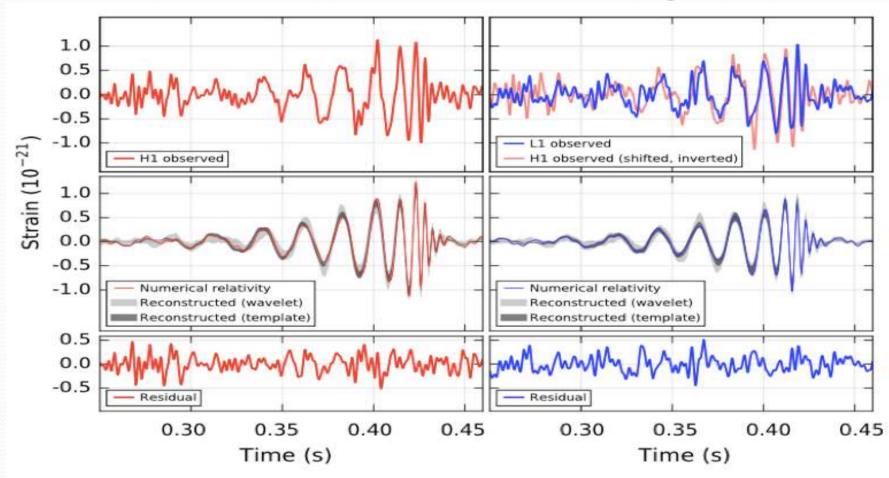
Alarm reported by the on-line algorithm for generic transient search

The signals on aLIGO ITFs /1

- The False Alarm rate bound to 1 event each 203,000 years
- False Alarm Probability

< 2*10⁻⁷

Statistical
 Significance of the
 Signal


 5.1σ

(5.1 Standard deviation)

The signals on aLIGO ITFs /2

Hanford

Livingston

The time evolution: BH formation

A signal from a BBH merger

Some parameters

 The event took place approximately 1.3 billion years ago

Primary black hole mass
Secondary black hole mass
Final black hole mass
Final black hole spin
Luminosity distance
Source redshift, z

$$36^{+5}_{-4}~{
m M}_{\odot}$$
 $29^{+4}_{-4}~{
m M}_{\odot}$
 $62^{+4}_{-4}~{
m M}_{\odot}$
 $0.67^{+0.05}_{-0.07}$
 $410^{+160}_{-180}~{
m Mpc}$
 $0.09^{+0.03}_{-0.04}$

The Paper

PRL 116, 061102 (2016)

Selected for a Viewpoint in *Physics*PHYSICAL REVIEW LETTERS

week ending 12 FEBRUARY 2016

Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott et al.*

(LIGO Scientific Collaboration and Virgo Collaboration) (Received 21 January 2016; published 11 February 2016)

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10^{-21} . It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1σ . The source lies at a luminosity distance of 410^{+160}_{-180} Mpc corresponding to a redshift $z=0.09^{+0.03}_{-0.04}$. In the source frame, the initial black hole masses are $36^{+5}_{-4}M_{\odot}$ and $29^{+4}_{-4}M_{\odot}$, and the final black hole mass is $62^{+4}_{-4}M_{\odot}$, with $3.0^{+0.5}_{-0.5}M_{\odot}c^2$ radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

DOI: 10.1103/PhysRevLett.116.061102

http://link.aps.org/doi/10.1103/PhysRevLett.116.061102

February 19, 2016

F. Frasconi - INFN Pisa

4C

Conclusions

- The upgrade of ground based ITF detectors to a 2nd generation instruments, is almost concluded;
- Following the VIRGO experience a big effort has been done implementing complex systems for seismic noise isolation:
 - detector bandwidth extended in the low frequency range, below 100 Hz
 - improved sensitivity of a factor 10;
- A network of 2nd generation detectors will play a crucial role to localize GW source in the sky;
- The first direct detection of GW (GW150914) is opening the era of Gravitational Waves astronomy.

Thank you for your attention!!