

CaloCube: a new-concept calorimeter for the detection of high-energy cosmic rays in space

E. Vannuccini (INFN Florence)
On behalf of the collaboration

The CaloCube collaboration

- ▶ R&D project financed by INFN for 3 years (end 2016)
 - Design and optimization of a calorimeter for measurements of highenergy cosmic rays in space
- Participants:
 - INFN: Catania/Messina, Florence,
 Milano (Bicocca), Pisa, Pavia, Trieste/Udine
 - CNR-IMM-MATIS Catania (dichroic filter deposition)
 - ▶ IMCB-CNR Napoli (Surface treatments and WLS deposition)
 - Contacts with CNR Firenze
- Wide range of expertises: calorimetry, cosmic-ray physics, VLSI analog design, scintillating crystals, polymeric coatings, interferometric filters,...
- In this talk, an overview of items mainly related to the activity of Florence group

Scientific background

- Focus on **galactic cosmic** rays
- Key items:
 - Identification of accelerationsites
 - Acceleration mechanisms
 - Diffusion and confinement within the Galaxy
 - Transition to extragalactic component
 - Additional component of dark matter?
- ② the «knee» → energy limit of galactic accelerators and/or confinement

Scientific background

Direct experiments

- Precise spectral measurements
- Individual particle identification
- Limited in energy due to statistics

Nuclear component:

- Measured up to 100TeV
- ▶ Hardening @200GeV
- Secondary nuclei (B) up to 1TeV/n

Electron and positrons

- Positron excess above 10 GeV
- All-electron spectrum measured up to 1TeV
- Waiting for CALET, DAMPE and ISS-CREAM (?) data

Scientific background

Indirect experiments

- Large statistics, down to 100TeV
- Large systematics
- Difficult composition measurements
- Nuclear component
 - Knee of inclusive «light» component (~p+He) ranging between 600TeV and 3PeV
 - Average composition progressively heavier across the knee
- Inclusive-electron component
 - Spectral cutoff observed at 1TeV

Key items for the future

- Direct measurement of individual **proton** and **nuclei** spectra in space at high energy (up to **1 PeV**)
 - Needs
 - Extremely large acceptance (**few m²sr**)
 - ▶ Good energy resolution (better than 40%)
 - ▶ Element identification capability
- Direct measurement of the electron component above 1TeV
 - Needs
 - Excellent energy resolution (better than 2%)
 - ▶ High h/e rejection power (**better than 10**⁵)
 - Large acceptance above 1 TeV
- Most feasible choice:
 - calorimeter coupled to a dE/dx-measuring device

The challenge

- Low flux of proton and nuclei
 - large acceptance required (at least few m^2sr)
- Space-borne instrument
 - ▶ Severe weight and size limitations → thin calorimeter (few i.l.s) !!!
 - ▶ Both geometrical factor and energy resolution are affected
- ▶ The proposed solution
 - Large acceptance
 - **Cubic geometry**, 5-facet detection
 - Good energy resolution
 - ► Active absorber (scintillating crystals)
 - Shower imaging
 - **D** segmentation → isotropic response

MC simulation

- Based on FLUKA package
- ► N×N×N cubic elements
- Active materials
 - Scintillating crystals
 - ▶ En.deposit-to-light conversion according to nominal L.Y.
 - Sensor
 - Si-Photodiods
 - Direct-ionization en.deposits taken into account
 - Signal induced by scintillation light according to nominal collection and quantum efficiencies
- Support structures
 - **Carbon fibers**, of reduced density, filling the gap among crystals
- Other features
 - Cherenkov and neutrons detection implemented
- Isotropic flux of particle on a generation surface A
- ▶ Effective geometrical factor

$$G_{eff} = A\pi \cdot \frac{N_{sel}}{N_{gen}} \rightarrow \text{depends on selection}$$

Geometry & materials

- Cube of cubes, **1 Moliere-radius** size each
- ► Total weight ~2 tons
- Active-volume fraction 78%

	CsI:Tl	CsI:Tl BaF ₂		BGO	LYSO:Ce
ℓ (cm)	3.60	3.20	2.40	2.30	2.10
gap (cm)	0.30	0.27	0.20	0.19	0.18
N° cristalli	$20 \times 20 \times 20$	$22 \times 22 \times 22$	$28 \times 28 \times 28$	$27 \times 27 \times 27$	$30 \times 30 \times 30$
L(cm)	78.00	76.34	72.80	67.23	68.40
$\lambda_{\rm I}$ totali (λ_{I})	1.80	2.31	3.09	2.72	3.01
X_0 totali (X_0)	38.88	34.73	24.96	55.54	53.75
$G(m^2sr)$	9.56	9.15	8.32	7.10	7.35

• Best choice dictated by balance between size (density of the absorber) and showercontainment (interaction length), which determine energy resolution

Energy determination

Deposited energy depends on the shower length

Energy resolution ↔ Effective GF (

Energy resolution ↔ Effective GF

Dependence on distance among crystals

Scintillating material

CsI(T1) crystals

Density	4.51 g/cm ³
Wavelength @max	550 nm
Light output	54 ph/keV (45 % of NaI(Tl))
Primary decay time	1 ms

▶ 3.6 cm side (~1 Molière radius)

Expected optical signal

► 1MIP \rightarrow ~ 20 MeV ~ 10⁶ ph/facet

(assuming 80% collection efficiency on one facet from ray-tracing simulation with diffusive surface)

Sensors

INFN

- Detector requirements:
 - Sensible to MIPs
 - ▶ Shower reconstruction capabilities up to 1PeV
 - From MC, up to 10% of incident energy deposited on a single crystal
- \rightarrow Dynamic range (0.5÷5·10⁶ MIP)

- At least 2 Photo Diodes necessary for each crystal
 - Large-area PD for small signals
 - VTH2090 (Excelitas)
 - Expected electrical signal
 - □ 1MIP ~ 4.10^4 e⁻ ~ 7 fC
 - □ Max signal $\sim 2.10^{11}$ e⁻ ~ 30 nC
 - Small-area PD for large signals
 - ▶ T.b.d. (VTP9412H, VTP3310H,...)
 - ▶ With GF ~ 600 times lower \rightarrow Max.signal ~ 50pC

	VTH2090
Active area	84.6 mm ²
Q.E. @CsI(Tl) peak	75%
C_{J}	70pF @30V

Front-end electronics

- CASIS chip (V1.1)
 - ▶ R&D project by INFN
 - Developed by INFN-Ts
 - Designed for Si-calorimetry in space
 - ▶ 16 independent analog channels
 - ► CSA
 - Correlated double sampling system
 - Double gain (1:20) with automatic gain control
 - Characteristics:
 - ▶ Dynamic range ~ 52.2 pC
 - \triangleright ENC ~ 2280e⁻ + 7.6e⁻/pF
 - ▶ 2.8 mW/ch

The prototype calorimeter assembly

- **4mm** gap between active elements
- > 3×3 elements for each plane
 - $\sim 1.5 R_{\rm M}$ shower containment
- Up to 15 layers
 - ▶ active depth 28.4 $X_0 \rightarrow 1.35 \lambda_I$

Feb 2013 v1.0		Ions Pb+Be 13-30 GeV/u	
Mar 2015	v1.1	Ions Ar+Poly 19-30 GeV/u	
Aug/Sep 2015	v1.2	μ,π,e 50-75-150-180 GeV	

▶ Three upgrades (v1.0-1-2), tested with particle beams

Light-collection optimization

- Studied with signal induced by 5,5 MeV α from Am source
- Setup:
 - single cube (matte) coupled to VTH2090 PD
 - Readout by commercial CSA and DPA modules (Amptek)

Single-crystal calibration

Signal induced by MIPs used to equalize crystal responses

Test with ion-beam

Precise beam position & Z-tagging from BT (INFN Pisa/Siena)

20

Energy resolution -vs- shower containment

Energy resolution -vs- A

Beam-test -vs- MC data

- Prot. v1.0 affected by instrumental effects → MC fine tuning:
 - 14% optical cross talk
 - 4.5% additional gaussian spread to single-crystal signal

- Agreement with MC prediction at few % level
- Measured energy resolution systematically worse than expected
- Improved performances expected for v1.1 (analysis underway)

Electron-beam test

- Large variations (~10%) on the collected energy depending on inpact position: crystal bulk, sensor, borders (known geometrical effect, not a surprise)
- Good resolution, but still instrumental effect to be undertood

Expected CaloCube performances for e.m.-showers

•Isotropic flux of electrons 100GeV÷1TeV (CR-like)

INFN

•CaloCube design optimized for gamma detection

Dual readout

- Simultaneous detection of Cherenkov and scintillation light useful to increase performances
 - Event-by-event correction for fluctuations in shower e.m.-fraction
 - Significant improovements in total absorption calotrimeters

What for CaloCube?

- Thin calorimeter → resolution dominated by leakage
- Cherenkov signal extraction from CsI(Tl) crystals

Dual readout applied to CaloCube geometty

- Dual readout applied to 60×60×60 CsI crystals 0.3mm gap
 - Selection of progressively contained shower
- Moderate resolution improvement, increasing for increasing depth
- From the space point of view
 - ▶ Equivalent to add (or save) 4 layers (~ 0.3t weight)
 - ▶ Could provide cross-calibration and cross-linearity check ??
 - ...as far as it is technologically feasible

Baseline design CsI(Tl) 20×20×20

Cherenkov signal in CsI(Tl)

- CsI(Tl) transparent down to 340 nm
- Separation based on <u>timing</u> (promt-vs-delayed) and <u>wavelength</u> (uv-vs-green)
- ► Test @BTF with 460MeV e⁻
 - ▶ Absorber wrapping (to keep Č directionality)
 - ▶ Two PMTs on opposite side, readout by

oscilloscope

(See P.Lenzi talk)

Summary

- The CaloCube R&D project, aiming to develop a novel design calorimeter, optimized for high-energy cosmic-ray measurements in space, was presented.
- As a proof-test of the CaloCube concept, a prototype made of CsI(Tl) has been constructed and tested, in several versions, with particle beams, obtaining performances close to the expectations
 - The final version, made of 5×5×20 crystals and readout by two PDs, covering the full required dynamic range, is under construction and will be tested during summer 2016 @SPS
- Dual readout compensation technique has been investigated and the possibility to extract Cherenkov signal from CsI(Tl) crystals was verified
- ▶ Thanks to the organizers for this opportunity

Spares

Channel Noise

File: data-out/20130204-211823.dat-analyse.root

- Channel pedestals (PED) evaluated by acquiring off-spill events
- Random noise (RN) ⊕ common noise (CN) ~ 30÷40 ADC counts

Shower profile

