Ulf Stolzenberg – II. Physikalisches Institut – Group Prof. Dr. A. Frey Georg-August-Universität Göttingen

Radiation length imaging with high resolution telescopes

Introduction

- Modern vertex detectors like the VXD vertex detector for Belle II are required to have a very low material budget
- Mean radiation length X/X₀ of a Belle II pixel detector (PXD) ladder $\sim 0.2\%$
- Mean value can't be used in tracking, need to find balance between detailed detector model and speed

X/X₀ imaging

- Basic Idea: Reconstruct multiple scattering kink angles on a central target plane
- \rightarrow Width of angle distributions depends on radiation length X/X₀
- Experimental setup: High resolution tracking telescope with at least 6 sensor planes and monoenergetic particle beam (~GeV)
- Divide particle trajectory in two parts: Up- and downstream track

Fit of angle distributions

• Fit function for reconstructed angle distributions:

$$f(\vartheta) = f_{\text{MSC}}(\theta, p, X, X_0) * \frac{2}{\sqrt{\pi}} e^{-\frac{(\theta)}{\lambda \cdot \sigma_{\text{noise}}}}$$
,
with the beam energy p , the thickness X , the radiation

• The independent radiation length imaging method shown here can be employed to test detector models

• Use a forward backward Kalman filter pair to estimate track states: In-state before the scattering and out-state afterwards

• X/X₀ Imaging: Subdivide target plane into small areas and sort the calculated angle according to the intersection point

length constant X_0 , the telescope resolution $\sigma_{\rm reso}$ and the calibration factor λ .

Calibration of the telescope angular resolution

The telescope angle resolution σ_{reso} affected by systematical errors such as:

- Wrong beam energy
- Wrong beam energy
- Telescope and target misalignment
- Introduce calibration factor λ : calibrated angle resolution given by: $\sigma'_{reso} = \lambda \cdot \sigma_{reso}$
- Define a number of well known measurement areas on a calibration target and reconstruct angle distributions
- Construct fit functions to describe the angle distributions, the only free parameter is λ

- Simplified multiple scattering model in tracking
- \rightarrow calibration of σ_{reso} necessary
- Perform a simultaneous fit of all selected angle distributions
- λ should be close to 1.0 (0.8< λ <1.2), otherwise the systematical errors are very large

PXD mechanical sample X/X₀

Results

- 75x75 μm² pixels, 29 mio tracks
- APV: 0.169 +/- 0.003 %

Silicon strip vertex detector (SVD)

Results

- 30 μ m pixels, ~ 100 mio tracks
- Capacities: ~1.4 % and ~2.3 % substructures visible
- Balcony (thickest point): 0.505 +/- 0.005 %

Expected: 0.170 % broadness: 7.0 mm

• Beam pipe wall thickness $d = 134 \ \mu m$ diameter of pipe: 1.5 mm

• Sensitive area: 0.544 +/-0.002 % Expected: 0.530 %

Summary & Outlook

- Developed method to measure radiation length of passive material within a high resolution tracking telescope
- After Calibration of angle resolution X/X0 measurements with uncertainties below 1 ‰
- Pixel size determined by number of tracks, need ~2000 tracks per pixel
- Comparison between VXD detector model and these results \rightarrow Influence on tracking quality?

