

EP-DT Detector Technologies

### Strategies for reducing the environmental impact of gaseous detector operation at the CERN LHC experiments

### Mar Capeans, Roberto Guida, Beatrice Mandelli

CERN

The 14<sup>th</sup> Vienna Conference on Instrumentations 16 February 2016

# Green House Gas (GHG) Emission from particle detection at LHC Reduction of GHG emission at LHC

- Gas Recirculation system
- Gas Recuperation system
- Achievements during LS1 and future expectations
- Search for new environmentally friendly gases for particle detectors
- RPC operation with eco-friendly gases

### GHG for particle detection at LHC

A greenhouse gas is any gaseous compound that is capable of absorbing infrared radiation, thereby trapping and holding heat in the atmosphere



C2H2F4 71%

Total GHG contribution

## GHG for particle detection at LHC

A greenhouse gas is any gaseous compound that is capable of absorbing infrared radiation, thereby trapping and holding heat in the atmosphere



GWP is a relative measure of how much heat a greenhouse gas traps in the atmosphere



#### **European Union "F-gas regulation":**

- Limiting the total amount of the most important F-gases that can be sold in the EU from 2015 onwards and phasing them down in steps to one-fifth of 2014 sales in 2030.
- **Banning the use** of F-gases in many new types of equipment where less harmful alternatives are widely available.
- **Preventing emissions** of F-gases from existing equipment by requiring checks, proper servicing and recovery of the gases at the end of the equipment's life.

### Where does the GHG emission come from?



### Where does the GHG emission come from?



## Gas Systems at the LHC experiments

### **Open mode operation**



#### **Gas recirculation system**



### **Gas recuperation plant**



### 12 LHC gas systems in open mode

Advantages:

- simple operation, flexibility Disadvantages:
- potential source of high gas consumption

#### **13 LHC gas systems in closed mode** Advantages:

- reduction of gas consumption

#### **Disadvantages:**

- complex systems
- constant monitoring (hardware and gas)
- sophisticated gas purifying techniques

#### **5 LHC gas systems with gas recuperation** Advantages:

- further reduction of gas consumption **Disadvantages**:
- higher level of complexity
- dedicated R&D

## Gas recirculation systems

#### Thanks to gas recirculation GHG emission already reduced by > 90%!!!



#### Nevertheless...

- 85% of remaining emission still from gas recirculation systems... why?
  - Large detector volumes and presence of detector leaks
- 15% of remaining emission from open mode gas systems
  - Upgrade to gas recirculation!

#### **Beatrice Mandelli**

## Gas recirculation systems

#### Thanks to gas recirculation GHG emission already reduced by > 90%!!!



#### Nevertheless...

- 85% of remaining emission still from gas recirculation systems... why?
  - Large detector volumes and presence of detector leaks
- 15% of remaining emission from open mode gas systems
  - Upgrade to gas recirculation!

#### **Beatrice Mandelli**

## Gas recirculation systems: improvements

### **Improvements during LS1:**

- ALICE MTR in gas recirculation
  - $C_2H_2F_4$ -i $C_4H_{10}$ -SF<sub>6</sub> (89.7-10-0.3)
  - 30% GHG reduction (4% wrt total emission)
  - At maximum exploitation: 90% GHG reduction
- Tuning of gas recirculation systems
  - LHCb RICH1, RICH2, ALICE TOF, ...
  - 40% GHG reduction per system (2% wrt total emission)
- Leak searches
- Implementation of flexible gas recirculation unit
  - Suitable for lab, test-beam, upgrades and R&D applications
  - 10% of GHG emission during LS1 came from detector R&D and upgrades

### **Upgrades during YETS:**

- LHCb GEM in gas recirculation
  - Intense R&D needed
  - It will pave the way for CMS GEM
  - When fully operational: 90% GHG reduction (6% wrt total emission)

## Gas recirculation systems: improvements

### **Improvements during LS1:**

- ALICE MTR in gas recirculation
  - $C_2H_2F_4$ -i $C_4H_{10}$ -SF<sub>6</sub> (89.7-10-0.3)
  - 30% GHG reduction (4% wrt total emission)
  - At maximum exploitation: 90% GHG reduction
- Tuning of gas recirculation systems
  - LHCb RICH1, RICH2, ALICE TOF, ...
  - 40% GHG reduction per system (2% wrt total emission)
- Leak searches
- Implementation of flexible gas recirculation unit
  - Suitable for lab, test-beam, upgrades and R&D applications
  - 10% of GHG emission during LS1 came from detector R&D and upgrades

### **Upgrades during YETS:**

- LHCb GEM in gas recirculation
  - Intense R&D needed
  - It will pave the way for CMS GEM
  - When fully operational: 90% GHG reduction (6% wrt total emission)



## Gas recirculation systems: improvements

### **Improvements during LS1:**

- ALICE MTR in gas recirculation
  - $C_2H_2F_4$ -i $C_4H_{10}$ -SF<sub>6</sub> (89.7-10-0.3)
  - 30% GHG reduction (4% wrt total emission)
  - At maximum exploitation: 90% GHG reduction
- Tuning of gas recirculation systems
  - LHCb RICH1, RICH2, ALICE TOF, ...
  - 40% GHG reduction per system (2% wrt total emission)
- Leak searches
- Implementation of flexible gas recirculation unit
  - Suitable for lab, test-beam, upgrades and R&D applications
  - 10% of GHG emission during LS1 came from detector R&D and upgrades

### **Upgrades during YETS:**

- LHCb GEM in gas recirculation
  - Intense R&D needed
  - It will pave the way for CMS GEM
  - When fully operational: 90% GHG reduction (6% wrt total emission)





### Gas recirculation systems: complexity



## Gas Recuperation system: CMS CSC example

#### If detectors permeable to Air not possible to go high in recirculation!

| Fresh gas<br>replenishing rate                       | 630 l/h                                               |
|------------------------------------------------------|-------------------------------------------------------|
| Average N <sub>2</sub> intake in one gas replacement | 1200 ppm                                              |
| Average O <sub>2</sub> intake in one gas replacement | 300 ppm                                               |
| Gas mixture<br>impurity limits                       | O <sub>2</sub> : 100 ppm<br>N <sub>2</sub> : 3000 ppm |
| Operating gas mixture                                | CO <sub>2</sub> -Ar-CF <sub>4</sub> 50-40-10          |
| Detector volume<br>Nominal Flow                      | 90 m³<br>6 m³/h                                       |

## Gas Recuperation system: CMS CSC example



### **Recuperation of CF<sub>4</sub> with warm separation!**

- Innovative CF<sub>4</sub> recuperation plant
  - Complex, long R&D development (first attempt of warm separation)
  - Impact today: 37% GHG reduction (4.6% wrt total emission)
- Still needs optimisation of the CF<sub>4</sub> separation process
  - Future expectation: 50-60% GHG reduction (12% wrt total emission)

## Gas Recuperation system: CMS CSC example



## GHG emission: achievements from Run1 to Run2



## Status of RPC systems for Run 2 and beyond

### ATLAS and CMS RPC systems are the main contributors to GHG emission

- Gas systems already in recirculation mode at the maximum possible rate allowed by the present detector leaks
- Under study the possibility to tune the gas flow according to run periods
- Detector leaks localised in few chambers but difficult to repair
- After leak search campaign during LS1: 11% (ATLAS) and 6% (CMS) GHG reduction (3% and 2.3% wrt total emission)

Even if leaks will be fixed, what is the maximum recirculation rate for safe RPC operation?



## New environmentally friendly gases



**Refrigerant properties of both HFOs are well known while studies of ionisation processes in particle detectors just started...** 

## Other possible environmentally friendly gases

#### Alternatives to C<sub>2</sub>H<sub>2</sub>F<sub>4</sub> (GWP 1430):



Alternatives to CF<sub>4</sub> (GWP 5700) and SF<sub>6</sub> (GWP 22200):



## **RPC performance with new freons**

### **Direct replacement of C<sub>2</sub>H<sub>2</sub>F<sub>4</sub> (or SF<sub>6</sub>) with HFOs:**

Both HFOs substituted to  $C_2H_2F_4$ ,  $iC_4H_{10}$  or  $SF_6$  to study the properties of the new gas mixture:

- similar behaviour of the two HFOs
- HFOs are much less electronegative than SF<sub>6</sub>
- HFOs has less quencing effects than  $iC_4H_{10}$
- HFOs cannot directly replace C<sub>2</sub>H<sub>2</sub>F<sub>4</sub>

#### **HFOs and Argon mixtures:**





### **RPC operation in avalanche mode for ATLAS and CMS**

- With Ar RPCs work in streamer
- Not suitable for LHC
- RPC operation needs to consider ATLAS-CMS requirements and conditions

## **RPC performance with new freons**

#### More complex gas mixtures:

### Addition of He:

- help in reduced the HV working point
- Not enough for streamer suppression

### Addition of He and $C_2H_2F_4$ :

- 70% GWP reduced with respect to standard gas mixture
- Good operation in avalanche mode (suitable for LHC operation)
- Still a long R&D in front of us

### Further tests needed for

- radiation hardness
- reactivity to detector and gas components
- aging effects

- ATLAS-CMS gas mixture
- R1234ze-C<sub>2</sub>H<sub>2</sub>F<sub>4</sub>-He-iC<sub>4</sub>H<sub>10</sub>-SF<sub>6</sub> 40-35.2-20-4.5-0.3
- R1234ze-C<sub>2</sub>H<sub>2</sub>F<sub>4</sub>-He-iC<sub>4</sub>H<sub>10</sub> 50-25.5-20-4.5



### - The current GHG emission is produced by few detector systems

- Constrains on operation conditions
- Leaks on detectors

#### - Gas systems well mastered

- All detectors using GHG are operated with gas recirculation systems
- Technologies to recuperate gas well established

#### - R&D on gas and detector starting

- Intense R&D activities in the communities
- Summarise requirements for future detectors
- New environmentally friendly gases
  - Different alternative for C<sub>2</sub>H<sub>2</sub>F<sub>4</sub> have been identified and under test
  - Investigate SF<sub>6</sub> and CF<sub>4</sub> replacements
  - Preliminary results are encouraging for RPC but still a long way in front of us