

Level-1 Track Trigger for CMS in HL-LHC

Sergo Jindariani (Fermilab)

Mark Pesaresi (Imperial College) on behalf of the CMS collaboration

Vienna Conference on Instrumentation, February 2016

Outline

- Why Level-1 (L1) tracking trigger?
- Challenges of implementing L1 track trigger at LHC
- Overview of current R&D efforts.
- Roadmap

LHC and CMS

Tracker:
~1 m² Pixels (66M channels)
-200 m² Si microstrips (9.6M channels)

Iron Yoke

Current CMS trigger

40 MHZ

100 kHZ

~1 kHZ

- L1 trigger system reduces event rate from 40 MHz down to 100 kHz
- Until HL-LHC, Level-1 decision is based solely on calorimeter and muon system information
- Tracker data available at the HLT level only

LHC timeline

Trigger rates are shown for the High-Level Trigger

Pile-up

Tracking in L1 trigger:

Tracking is highly effective for pileup mitigation

- Electron/Photons
 - Extra measurement Rate Reduction
 - Isolation
- Muons
 - Excellent Pt Resolution
 - Isolation

- Tau TriggersMultiprong
- Separation of Interactions
 - Hadronic/Multi-object Triggers
 - Track-based Missing Energy

Scale of the problem

Sheer amount of data in collisions:

- Bunch Spacing = 25 ns i.e. 40 million bunch crossings per second
- Up to 200 interactions per bunch crossings
- Several particles per interaction
 - = > Reconstruct billions of particles per second

Challenge 1:

Up to 1 Pb/s bandwidth needed (50-100 Tbs after soft track suppression)

Scale of the problem

Challenge 2:

Tracks have to be reconstructed in < 5 us

New CMS Tracker

More on the tracker in the talks by Giacomo SGUAZZONI and Axel KONIG (Wednesday)

Tracker design is from the ground up done for triggering

- Stub = pair of clusters in the 2 sensors of a module within a predefined strips window (enabling pT cut at the module level).
- Pass/Fail window is programmable (2 GeV default cut)
- Stubs drastically reduce (by a factor 10-20) the amount of data to extract from the tracker @40MHz
- Stubs allow L1 tracking possibility

- ~15000 modules transmitting
 - p_T-stubs to L1 trigger @ 40 MHz
 - Full tracker readout @ 750 kHz

General Strategy Partition detector into trigger towers Data transfer Associative Memory (AM) **Hough Transformation** Tracklet-based Data Fit filtered hits in FPGA to formatting determine track Δt_1 parameters Pattern Recognition Δt_2 Total **Track** Fitting and processing Δt_3 duplicate Latency Δt ? removal Tracks out

Approaches

Need to handle the high occupancy and combinatorics that result from there (faster than linear scaling). Done using:

- data partitioning (tracklets)
- Hough transform (TMT)
- Associative Memory (AM+FPGA)

Hardware:

<u>FPGA-only</u> (Tracklets and TMT): perform both pattern recognition and track fitting in FPGA:

- Can be done using conventional hardware (FPGA)
- challenging to fit within FPGA resources and the latency budget

<u>Associative Memory (AM) based:</u> Use AM for pattern recognition followed by track fit performed in an FPGA.

Proven: CDF SVT and ATLAS FTK (in progress), but not at L1 Requires custom ASIC

1/15/16 S.Jindariani, VCI'2016

Tracklet Based Approach

Tracklet based approach

Seeding:

- Form tracklets from pairs of stub in adjacent layers
- Use beamspot constraints
- Tracklet must be consistent with Pt and z0 requirements

Tracklet based approach

Seeding:

- Form tracklets from pairs of stub in adjacent layers
- Use beamspot constraints
- Tracklet must be consistent with Pt and z0 requirements

Projecting:

- Project to other layers and disks
- search window derived from residuals b/w projected tracks and stubs
- In-out & Out-in

Tracklet based approach

Seeding:

- Form tracklets from pairs of stub in adjacent layers
- Use beamspot constraints
- Tracklet must be consistent with Pt and z0 requirements

Projecting:

- Project to other layers and disks
- search window derived from residuals b/w projected tracks and stubs
- In-out & Out-in

Fitting

linearized track fit

Duplicate Removal:

Based on number of shared stubs

Performance in Simulation

- Muons: Sharp turn-on at 2 GeV & high efficiency across all η. Eff ~99%
- Pions: Somewhat lower efficiency due to higher interaction rate. Eff~90%
- Electrons: Slower turn-on curve, efficiency reduced from bremsstrahlung. Eff~90%.

Similar performance is expected in other approaches

Tracklets in Hardware

Demonstration in hardware is needed to show that the approach can work within latency budget

Xilinx Virtex-7 based board CTP7 is being used for demonstration

Fully Time Multiplexed Based Approach

regional readout boards

Time multiplexed architecture

- HLT-like architecture event data flows to a single processing node
- now implemented in CMS Level 1 Calorimeter Trigger
- allows for a simple, scalable slice demonstration system

- processors are independent in time
- maximizes flexibility to make changes to algorithm (even during operation!)
- efficient use of FPGA resources
- minimizes hardware regions
- regional data sharing avoided

1/15/16 S.Jindariani, VCI'2016 20

- µTCA card built for CMS upgrade
 L1 calorimeter trigger
- Contains a Virtex-7 XC7VX690T
- 72 input/ 72 output optical links that operate up to 12.5 Gbps
- Total bandwidth > 0.9 Tbps
- maximum number of links into the L1 Track Finder (72) imposes limit on DTCs connected
- need to divide tracker into at least five regions, e.g. in η ($\Delta \eta \sim 1.0$)
- flexibility to choose 24-36x time multiplexing

two step track finding approach based on coarse 2D Hough Transforms

- orders stubs into valid track candidates
- · binning of stubs according to projections

~20x20 typical array size required

36 φ segments, each an independent HT

apply track criteria to accept

bins with stubs that have compatible local bend

stubs from selected bins form track candidates for further processing

- injecting stubs from "ttbar+140PU" into hardware & comparing kinematic distributions of tracks found with those predicted by software
- fairly good agreement so far with remaining discrepancies to be debugged
- simulated performance indicates high efficiency for track finding above 3 GeV/c

1/15/16 S.Jindariani, VCI'2016

AM+FPGA Based Approach

Associative Memory

Pattern Recognition Associative Memory = content addressable memory (CAM) cells + majority logic (ML)

Massive parallel processing to tackle the intrinsically complex combinatorics

- o Avoid the typical power law dependence of execution time on occupancy
- Solving the pattern recognition in times roughly proportional to the number of hits

CMS L1 track trigger applications require high pattern density and high operational frequency while managing power needs

Sectors and processors

S.Jindariani, VCI'2016

Regional multiplexing => divide the detector into trigger towers

26

Tale of two mezzanines

Kintex-7 FPGA + AMchipo5/06

- Designed based on ATLAS FTK chip
 - High pattern density (AM05/6, 2k/128k)
 - AM05 version in hand and working
- Goal: to prove that the 2M patterns can be implemented with today's technology

UltraScale FPGA + VIPRAM

- Designed for L1 applications
 - Low latency
 - Low pattern density (4-16k)
- UltraScale FPGAs, more capability
- Goal: to optimize for latency and performance, develop the spec for the final chip

S.Jindariani, VCI'2016

Linearized track fitting

Given a set of stubs estimate:

- compatibility with a track: χ^2 /ndof
- track parameters: charge/p_{T,} $\phi_{0,}$ z_{0,} cot(θ) and d₀

Method: Linearized Track Fit $\phi_0 = \sum_i A_i \Delta \phi_i + \bar{\phi}_0$ where $\Delta \phi_i = \phi_i - \bar{\phi}_i$

New Idea: To minimize number of constants transform the tracker into a smooth cylinder (only 20k constants for the entire tracker)

Gearing up for demonstration

 Need to demonstrate feasibility to finalize design of the tracker

At least one approach has to be proven to work

- Equation with many variables:
 - Latency
 - Efficiency & Fake Rate
 - Anticipated size and cost of the system
 - Robustness (against material, alignment, beam shifts, etc)`
- Target end of this year

μTCA crate with MP7 (TMT)

Conclusions

- Having L₁ track trigger is crucial for success of CMS physics goals in HL-LHC
- Highly challenging as track triggering at this scale and speed has never been implemented before
- Aggressive R&D efforts to address the challenge -> both FPGA-only and AM+FPGA approaches
- Plan to demonstrate by the end of 2016 (with Tracker Technical Design Report planned in 2017)

1/15/16 S.Jindariani, VCI'2016 30

Backup

CMS Detector

More data

Proposed L1 Trigger Architecture

Pattern Recognition Engine Flow

1/15/16

Single Muon + Jet

1/15/16 S.Jindariani, VCI'2016 36

Running Firmware in PRM Board

- First time running everything in PRM board
 - ✓ All the function blocks are implemented in the Master FPGA of proPRM for simplification
 - ✓ Event MEM and Init MEM are BlockRAM with Initial Values (ROM)

System Requirements

S.Jindariani, VCI'2016

AM Simulation

Stubs input per trigger tower:

- ~ few x 100
- With patterns per trigger

tower: ~ 4 M

Roads fired per trigger tower:

<50 unique patterns fired

 Stubs left for track fitting at AM stage filtering: ~ 20% (th is a set of "stubs of interests" Fountain-like Sstrips, w/o z-segmentation, seem to achieve smaller pattern bank sizes with less fit combinations

Impact of tracking at L1:

- Immense trigger challenge facing CMS
- EXAMPLE: At upgraded luminosity trigger curve flattens out for L1 muons
 - Most important handle (pt) no longer works with just the information from the muon system
- Need additional information from the tracker to control trigger rates

Impact of tracking at L1:

Current Level-1 Trigger

- No central tracking information
- Electrons/Gammas (EG), Taus, Jets based solely on calorimeter deposits.
- Muons reconstructed from tracks in muon chambers.
- Maximum Bandwidth: 100 kHz

HL-LHC:

- Current Trigger System:
 - EG rate @25 GeV > 100 kHz
 - Muon rate plateaus
 - Overall Trigger Rate > 1000 kHz (unsustainable) to reach physics goals
- Upgraded System
 - Must increase total bandwidth
 - Must increase trigger capabilities
 - <u>Level-1 Tracking is a completely</u> NEW handle.

$L = 5.6 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$	Level-1 Trigger	
$\langle PU \rangle = 140$	with Level-1 Tracks	
		Offline
Trigger	Rate	Threshold(s)
Algorithm	[kHz]	[GeV]
Single Mu (tk)	14	18
Double Mu (tk)	1.1	14 10
ele (iso tk) + Mu (tk)	0.7	19 10.5
Single Ele (tk)	16	31
Single iso Ele (tk)	13	27
Single γ (tk-iso)	31	31
ele (iso tk) + e/γ	11	22 16
Double γ (tk-iso)	17	22 16
Single Tau (tk)	13	88
Tau (tk) + Tau	32	56 56
ele (iso tk) + Tau	7.4	19 50
Tau (tk) + Mu (tk)	5.4	45 14
Single Jet	42	173
Double Jet (tk)	26	2@136
Quad Jet (tk)	12	4@72
Single ele (tk) + Jet	15	23 66
Single Mu (tk) + Jet	8.8	16 66
Single ele (tk) + $H_{\rm T}^{\rm miss}$ (tk)	10	23 95
Single Mu (tk) + H_T^{miss} (tk)	2.7	16 95
H _T (tk)	13	350
Rate for above Triggers	180	
Est. Total Level-1 Menu Rate	260	

1/15/16 S.Jindariani, VCI'2016

Board level development

AM Architecture

Architecture is flexible and scalable

■Ten Processors send target Processor Blade in a round robin scheme.

Linearized track fitting

Given a set of stubs estimate:

- compatibility with a track: χ^2 /ndof
- track parameters: charge/p_T, ϕ_0 , z_0 , cot(θ) and d_0

Method: Linearized Track Fit
$$\phi_0 = \sum_i A_i \Delta \phi_i + \bar{\phi}_0$$
 where $\Delta \phi_i = \phi_i - \bar{\phi}_i$

$$\Delta \phi_i = \phi_i - \bar{\phi}_i$$

To minimize number of constants transform the tracker into a smooth cylinder

Layers/Disk Combinations (6/6) Before Projections

Layers/Disk Combinations (6/6) After Projections

1/15/16 S.Jindariani, VCI'2016

Example: Barrel Trigger Tower

1/15/16 S.Jindariani, VCI'2016 45

Linearized track fitting

1/15/16

Linearized track fitting

- Including 5/6
- 42 (6x6) unique matrices for 6/6 and 252 (5x5) unique matrices for 5/6
- Total number of constants: 19800

	Barrel 0 < η < 0.8	Hybrid 0.8 < η < 1.6	Endcaps $\eta > 1.6$
	transverse	transverse	transverse
	2 6x6	18 6x6	16 6x6
	12 5x5	108 5x5	96 5x5
	R-z	R-z	R-z
	1 6x6	9 6x6	8 6x6
	6 5x5	54 5x5	48 5x5
_	1100 constants	9900 constants	8800 constants

6 S.Jindariani, VCI'2016

FM-TMT

- Track finding done using Hough Transformation (HT)
- 36 or 64 (2 implementations) ϕ sectors. Processed processed by independent HT
- Currently, each MP7 processes all (or many) ϕ sectors within a single η sector.
- First tracks showing up in hardware. ~ agree with simulation

1/15/16 S.Jindariani, VCI'2016 48

FM-TMT

1/15/16 S.Jindariani, VCI'2016 49

CMS Tracker Upgrade

One quadrant of the r-z view

