

FoCal – a high-granularity electromagnetic calorimeter for forward direct photon measurements

Chunhui Zhang for ALICE-FoCal Group Utrecht University / Nikhef

The FoCal Project

• What is the FoCal?

FoCal = FoCal-E + FoCal-H

A Forward Calorimeter for measurement of forward direct photons at the LHC, upgrade proposal in ALICE.

- Main goal: decisive probe of gluon-density saturation at small Bjorken-x.
- **Golden measurement**: direct photon p_T distributions in pp and p-Pb, probe Bjorkenx down to ~10⁻⁵

Requires high-granularity detector

- Discrimination between direct photons and photons from π^0 decay at high energy, small opening angle from π^0 decay.

Should also allow:

- 3D shower shape analysis, particle flow.

Conceptual design of FoCal upgrade

Existing EM-calorimeters vs FoCal

	ATLAS	ALICE	LHCb	CMS	Future FoCal	FoCal prototype
Absorber + sampler	Pb+LAr	Pb+sc	Pb+sc	PbWO ₄	W+Si	W+Si
Finest Granularity (mm ²)	4.7×147	60×60	40×40	22×22	≈1	0.03×0.03
Moliere Radius(mm)	48	32	35	21.9	<15	~11

Besides the energy measurement, the proposed FoCal should enable:

- 1. High granularity \rightarrow very fine shower shape (lateral profile)
- Small Molière Radius (90% energy deposition) → small shower size

The two features are crucial for two-shower separation.

ALICE-FoCal

Single event measurement of two

showers in prototype detector

FoCal prototype

FoCal prototype

FoCal prototype

Test beam setup

ALICE-FoCal

Utrecht lab

cosmic

2013-2016

Monte-Carlo Simulation

- build-up a "real" detector (misalignment, inclination and excluded pixels are taken into account)
- modeling of charge diffusion ~ isotropic diffusion + attenuation
- noise is added ~ Poisson(3.55)

Example of single EM shower

ALICE-FoCal

vienna 2016

Alignment

Calibration (I)

No signal available from part of the sensors (dead, noisy, ...): compensation for dead area (16.7% of total pixels)

Calibration (II)

Relative calibration of different sensors in one layer from lateral profile.

Relative calibration of different layers
from longitudinal profile which should
be fitted well by a Gamma function.

Results Linearity and energy resolution

ALICE-FoCal

Results Longitudinal Profile

Normalized longitudinal shower profile

Position of the shower maximum

Results Typical lateral profile

Unique measurement of hit densities as a function of distance to the shower axis.

Results

Comparison between simulation and experiment

Good agreement between experiment and simulation

Results Fit of lateral profile

[1] G. Ferri et al., Nucl. Inst. Meth. A273(1988)123 [2] R. Hagedorn, Riv. Nuovo Cim. 6(1983)1

Fit function:

(0)
$$F(r) = N[\exp(-r / \lambda_1) + C_{12} \exp(-r / \lambda_2)]$$

(1)
$$f(r) = N[\exp(-\sqrt{r/\lambda_1}) + C_{12}\exp(-r/\lambda_2)]$$
 [1]

2)
$$g(r) = p0(1 + \frac{r}{p1 \cdot p2})^{-p1}$$

Exploring analytical parameterizations of shower profile:

Agreement within \sim 20% for r < 25 mm.

Results Integrated lateral profiles

Integrated lateral profile as a function of distance to the shower axis. Estimated Moliere radius $R_M \sim 11mm$

ALICE-FoCal

Results Two shower separation

- Calculate total energy in cylinder of finite radius around shower centre.
- Study as a function of radius.

. -15 ⁻¹⁰

Results Core energy

ALICE-FoCal

Conclusions

Successful Proof of Principle of Particle Counting Calorimetry.

- A high granularity digital Si-W calorimeter prototype for FoCal has been built and tested.
- Good linearity has been achieved.
- General performance agrees well with the simulation.

Spatial granularity allows unique measurements

- High resolution lateral shower profiles have been obtained.
- Very efficient two-shower separation should be possible.

Thanks for your attention

Physics performance in simulation

High granularity layers in FoCal-E strongly improve rejection power for pion decay photons and lead to an acceptable direct photon signal fraction. Detector performance should allow a discrimination of competing physics scenarios.

Alignment

Average sigma of Gaussian fit : $\sim 11 \mu m$