

Ion space-charge effects in multi-GEM detectors: challenges and possible solutions for future applications

* A. Afandi⁴, S. Franchino¹, D. Gonzalez-Diaz¹, R. Hall-Wilton³, R. B. Jackman⁴, H. Müller¹, T. T. Nguyen⁴, R. de Oliveira¹, E. Oliveri¹, D. Pfeiffer^{1,3}, F. Resnati¹, L. Ropelewski¹, J. A. Smith⁴, M. van Stenis¹, C. Streli, <u>P. Thuiner^{1,2}</u>, R. Veenhof⁵

¹CERN, ²Technische Universität Wien, ³ESS, ⁴University College London, ⁵Uludağ University

- The ion back-flow into the conversion volume results in field distortions
- Can the ion back-flow be further reduced?
- What are the intrinsic limits of GEM detectors?
- How severe are the distortions if detectors are operated close to these limits?

Part 1 – Ion back-flow elimination with graphene?

- What is graphene?
- Why and how do we want to use it?
- What has been done
- What still needs to be done

Part 2 – Effects of high charge-densities in triple-GEM detectors

- Space-charge effects in the transfer stages
- Space-charge effects in the amplification stages
- How can the effects be reduced?

Part 1

_

Can the ion back-flow be eliminated completely?

- Graphene is a single layer of carbon atoms arranged in hexagonal lattice
- Regarded as the thinnest possible conductive mesh with pore size ~ 0.6 Å

Reported strong assymetry in electron and ion transmission through graphene

- Mechanically robust in respect to its thickness: it can be freely suspended over tens of μm
- Idea: create a membrane fully transparent to electrons and fully opaque to ions eliminating ion back-flow in gaseous detectors
- Goal: Measure electron and ion transparencies of graphene layers O(cm²) suspended on metal meshes in gas as function of electric field and gas mixture

Preparation of graphene samples

Transfer of graphene samples onto supporting copper meshes

Transfer of single layer graphene

Transfer of triple layer graphene

Direct etching of support structure

$$T_{electron} = P_1/P_2$$

$$T_{ion} = I_C/(I_C + I_M)$$

Triple layer graphene on a mesh

Ar/CO₂ 70/30 mixture, Ø 30 μ m and pitch 60 μ m mesh Ø 0.5 mm collimated beam of 8keV Cu X-rays

Ion transparency reduced to the measurement sensitivity level but electrons do not tunnel easily

Space or contaminants between the layers? Still defects?

Close to measure intrinsic properties of graphene

- Changing the electron energy by:
 - increasing the electric field
 - changing the gas mixture (more argon, neon)

Why not transfer a graphene layer on a GEM?

- Changing the electron energy by:
 - increasing the electric field

Graphene layer on the bottom electrode of a GEM

Graphene on a GEM

double-layer triple-layer

GEM single-layer

Graphene on top of a GEM Ar/CO_2 70/30 gas mixture $E_{D1} = 50V/cm$, $E_{D2} = 1kV/cm$ X-ray beam (collimated and not) Triple-layer not transparent to electrons Graphene shorted the GEM electrodes

Summary of part 1

- Graphene was successfully transferred onto copper meshes and GEM electrodes
- A transfer-less method to produce graphenecovered meshes is under development
- A method was developed to measure the electron and ion transparency in gaseous detectors
- With the field settings and gas mixtures currently used graphene is not transparent to electrons and ions
- Real multi-layer graphene grown by CVD will improve transmission of electrons
- Changing the GEM layout will overcome challenges with defective graphene layers in the GEM holes

Part 2

_

Why the need for an elimination of the ion back-flow?

- Behaviour of triple GEM gain (Everaerts, 2006)
 - Increasing the flux first increases and for even higher flux decreases the effective gain
- Decrease of ion back-flow in GEMs (ALICE, 2013)
 - Increasing the flux reduces the ion back-flow
- Increase of mesh transparency (GDD lab, 2014)
 - Increasing the flux increases the electron transparency of a GEM-like mesh

Ar/CO₂ 70/30
Cu x-ray,
$$E_{x-ray} = 8 \text{ keV}$$
 $n_p \approx 300$
 $d_{beam} = 1 \text{ mm}$

Observations pt. 1

Space-charge effects in the transfer region

- Electric field decreases at anode and increases at cathode
- Average electric field over whole length equals nominal field
- Larger number of ions lead to a stronger effect
- Transfer fields and drift field behave similarly

Space-charge effects in the transfer region

- Electron (ion) collection efficiency increasing (decreasing) with flux
- Electron (ion) extraction efficiency increasing (decreasing) with flux
- Effect more pronounced with every stage of the triple GEM
- Effect more pronounced for larger particle flux

Observations pt. 1

COMSOL simulation: single GEM hole, axial symmetric, stationary solution

- Ion space-charge modifies first the transfer fields and then the amplification fields
- The effects are modelled for standard triple GEMs and are quantitatively understood
- The effect is reduced by
 - Faster evacuation of ions
 - Increased GEM transparency

Future detectors need to be optimized for new requirements (e.g. ion back-flow, effective gain)

• Optimization of geometry and gas mixture to eliminate effects observed at particle fluxes of $O(10^5)$ Hz/mm² and above

 Graphene as a membrane only transparent to electrons may eliminate the ion back-flow

Backup

CVD graphene transfer onto support

Direct etching of CVD graphene copper foil

Ar/CO₂ 90/10 mixture, 30 μm Ø and 120 μm pitch mesh 1 mm Ø collimated beam of 8keV Cu X-rays

Reduced electron and ion transparencies

Same behaviour as very small optical transparency mesh Measurement dominated by defects in graphene layer

Graphene on a GEM

Defects on borders of graphene short the GEMs and contaminate the triple-GEM detector Change of GEM layout to move borders out of active area

Collection and extraction efficiency

Collection and extraction efficiency

 Effective gain is the gain of the GEM, taking into account the collection and extraction efficiencies

$$G_{eff} = \varepsilon_{col} \times \varepsilon_{extr} \times G_{nom}$$

Observations pt. 2

- Histogram of time to previous trigger
- Exponential fit
- Split into time intervalls with equal number of counts

