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• The ion back-flow into the conversion volume 
results in field distortions

• Can the ion back-flow be further reduced?

• What are the intrinsic limits of GEM detectors?

• How severe are the distortions if detectors are 
operated close to these limits?
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Introduction



Part 1 – Ion back-flow elimination with graphene?

• What is graphene?

• Why and how do we want to use it?

• What has been done

• What still needs to be done

Part 2 – Effects of high charge-densities in triple-GEM 
detectors

• Space-charge effects in the transfer stages

• Space-charge effects in the amplification stages

• How can the effects be reduced?
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Outline
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Part 1
–

Can the ion back-flow be eliminated completely?



• Graphene is a single layer of carbon atoms 
arranged in hexagonal lattice

• Regarded as the thinnest possible conductive 
mesh with pore size ~ 0.6 Å
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What is Graphene?



• Reported strong assymetry in electron and ion 
transmission through graphene
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Why is it interesting?

vacuum



• Mechanically robust in respect to its thickness:
it can be freely suspended over tens of μm

• Idea: create a membrane fully transparent to 
electrons and fully opaque to ions
eliminating ion back-flow in gaseous detectors

• Goal: Measure electron and ion transparencies
of graphene layers O(cm²) suspended on metal 
meshes in gas as function of electric field and gas 
mixture
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Why is it interesting?
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Transfer of triple
layer graphene

Transfer of single
layer graphene

Small defects No defects Mainly defects

Direct etching of 
support structure

Preparation of graphene samples

Transfer of graphene samples onto supporting copper meshes
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Measurements

Telectron = P1/P2

np

Collimated 8 keV X-ray
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Measurements

A

Ions

A
Ions

A
Electrons

Tion = IC/(IC+IM)



Ar/CO2 70/30 mixture, ∅ 30 μm and pitch 60 μm mesh

∅ 0.5 mm collimated beam of 8keV Cu X-rays

Ion transparency reduced to the measurement sensitivity level
but electrons do not tunnel easily

Space or contaminants between the layers? Still defects?

Close to measure intrinsic properties of graphene
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Triple layer graphene on a mesh



• Changing the electron energy by:
– increasing the electric field

– changing the gas mixture (more argon, neon)

• Why not transfer a graphene layer on a GEM?

VCI 2016 Vienna - 2016/02/17 Patrik Thuiner 12

Increasing the electron energy



• Changing the electron energy by:
– increasing the electric field

– changing the gas mixture (more argon, neon)

• Why not transfer a graphene layer on a GEM?
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Increasing the electron energy

Graphene layer on the 
bottom electrode of a GEM

e–

pre-acceleration

field focussing

transmission
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Graphene on a GEM

Graphene on top of a GEM
Ar/CO2 70/30 gas mixture
ED1 = 50V/cm, ED2 = 1kV/cm
X-ray beam (collimated and not)
Triple-layer not transparent to electrons
Graphene shorted the GEM electrodes

double-layer triple-layer

GEM single-layer



• Graphene was successfully transferred onto copper 
meshes and GEM electrodes

• A transfer-less method to produce graphene-
covered meshes is under development

• A method was developed to measure the electron 
and ion transparency in gaseous detectors

• With the field settings and gas mixtures currently
used graphene is not transparent to electrons and 
ions

• Real multi-layer graphene grown by CVD will 
improve transmission of electrons

• Changing the GEM layout will overcome challenges 
with defective graphene layers in the GEM holes
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Summary of part 1
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Part 2
-

Why the need for an elimination of the ion back-flow?



• Behaviour of triple GEM gain (Everaerts, 2006)

– Increasing the flux first increases and for even higher 
flux decreases the effective gain 

• Decrease of ion back-flow in GEMs (ALICE, 2013)

– Increasing the flux reduces the ion back-flow

• Increase of mesh transparency (GDD lab, 2014)

– Increasing the flux increases the electron 
transparency of a GEM-like mesh
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Motivation
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Effective gain
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Standard triple-GEM
Ar/CO2 70/30
8 keV Cu X-rays
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Setup
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Ar/CO2 70/30
Cu x-ray, Ex-ray = 8 keV
dbeam = 1 mm

Cu x-ray
tube

Uncollimated
Beam

Cu shield 
and collimator GEM

np ≈ 300
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Observations pt. 1
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Effective Gain
Geff = IA / (R × np × e)

Ions per primary electrons
Gion = IC / (R × np × e)

Ar/CO2 70/30
8 keV X-rays



• Electric field decreases at anode and increases at cathode
• Average electric field over whole length equals nominal field
• Larger number of ions lead to a stronger effect
• Transfer fields and drift field behave similiarly
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Space-charge effects in the transfer region
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v = μE

L

Anode
ground

Cathode
-V

nominal field at t=0s
E0 = ΔV/L

Anode Cathode



Electric field increases 
close to GEM bottom 
electrodes

Electric field 
decreases close to 
GEM top electrodes

GEM3 GEM2 GEM1

• Electron (ion) collection efficiency increasing (decreasing) with flux

• Electron (ion) extraction efficiency increasing (decreasing) with flux

• Effect more pronounced with every stage of the triple GEM

• Effect more pronounced for larger particle flux
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Space-charge effects in the transfer region

Patrik Thuiner

Induction Transfer 2 Transfer 1 Drift

VCI 2016 Vienna - 2016/02/17
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Observations pt. 1
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Effective Gain
Geff = IA / (R × np × e)

Ions per primary electrons
Gion = IC / (R × np × e)

Stable operations
Space-charge
effects in the
transfer gaps

Ar/CO2 70/30
8 keV X-rays
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Space-charge effects in the amplification region

Reduced ion
extraction

Reduced
gain



• Space-charge effects for high fluxes of 8 keV 
X-rays in an Ar/CO2 70/30 gas mixture were 
observed

• Ion space-charge modifies first the transfer fields 
and then the amplification fields

• The effects are modelled for standard triple 
GEMs and are quantitatively understood

• The effect is reduced by

– Faster evacuation of ions

– Increased GEM transparency
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Summary of part 2
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Future detectors need to be optimized for new 
requirements (e.g. ion back-flow, effective gain)

• Optimization of geometry and gas mixture to 
eliminate effects observed at particle fluxes of  
O(105) Hz/mm2 and above

• Graphene as a membrane only transparent to 
electrons may eliminate the ion back-flow
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Conclusions
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Backup
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CVD graphene transfer onto support
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Direct etching of CVD graphene copper foil

10 11 12

Acetone



Ar/CO2 90/10 mixture, 30 μm ∅ and 120 μm pitch mesh

1 mm ∅ collimated beam of 8keV Cu X-rays

Reduced electron and ion transparencies

Same behaviour as very small optical transparency mesh

Measurement dominated by defects in graphene layer
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Transparencies
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Graphene on a GEM

Defects on borders of graphene short the GEMs 
and contaminate the triple-GEM detector

Change of GEM layout to move borders out of 
active area
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Collection and extraction efficiency

Ecollection = 3.5 kV/cm

Eextraction = 3.5 kV/cm

Eextraction = 1.5 kV/cm Eextraction = 3.5 kV/cm Eextraction = 5.5 kV/cm

Ecollection = 1.5 kV/cm Ecollection = 3.5 kV/cm Ecollection = 5.5 kV/cm

EGEM = 75 kV/cm

EGEM = 75 kV/cm
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Collection and extraction efficiency

• Effective gain is the gain of the GEM, taking into 
account the collection and extraction efficiencies

Geff = εcol × εextr × Gnom 

εcol

εeff

Gnom

curves normalized to 3.5 kV/cm
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Observations pt. 2
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Ion back-flow
IBF = IC / IA

Number of electrons and
Ions reduced equally!
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Space-charge effects in the amplification region

MPGD / Trieste / Italy – 2015/10/15 Patrik Thuiner

Induction Transfer 2 Transfer 1 Drift

Ions 
accumulate 
mostly in 
front of 
GEM holes
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Space-charge effects in the amplification region

MPGD / Trieste / Italy – 2015/10/15 Patrik Thuiner

Induction Transfer 2 Transfer 1 Drift

Space-charge 
decreases ion 
extraction from 
GEM hole
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Space-charge effects in the amplification region

MPGD / Trieste / Italy – 2015/10/15 Patrik Thuiner

Induction Transfer 2 Transfer 1 Drift

Point of highest 
charge density 
moves further 
inward with 
increasing rate
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• Histogram of time to previous trigger

• Exponential fit

• Split into time
intervalls with
equal number
of counts
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Flux measurement
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τD

ci = ci+1
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Energy resolution
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140 kHz/mm² 270 kHz/mm² 690 kHz/mm²

4 kHz/mm² 1 MHz/mm²
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Energy resolution

Patrik ThuinerVCI 2016 Vienna - 2016/02/17

140 kHz/mm² 270 kHz/mm² 690 kHz/mm²

4 kHz/mm² 1 MHz/mm²

change of 
amplification

change of 
transfer fields

change of 
transfer fields
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Energy resolution
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Energy resolution
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Energy resolution


