

Liquid xenon calorimeter for MEG II experiment with VUV-sensitive MPPCs

1. MEG II experiment

2. LXe γ -ray detector

3. R&D of MPPC

4. Detector construction

5. Summary

$\mu \rightarrow e \gamma$ search

- $lue{}$ We search for charged lepton flavor violating decay of muon, μ ->e+ γ .
- Prohibited in SM, detectable branching ratio in some BSM model
- Main background is the accidental background.
- Detector resolutions, **especially energy resolution of** γ -ray, are important to effectively distinguish the signal event from the accidental background

- E=52.8MeV
- back-to-back
- coincident

- Dominant background
- E < 52.8MeV
- not back-to-back

Radiative muon decay

- E<52.8MeV
- not back-to-back
- coincident

MEG II experiment

Upgrade of MEG experiment

- μ^+ stopping rate will be doubled
 - $3\times10^7 \ \mu /s \rightarrow 7\times10^7 \ \mu /s$
- Detection efficiency will improve.
- Resolutions of all detectors will become half.
- New detector for background tagging will be introduced

Expected sensitivity: 4×10⁻¹⁴

 One order of magnitude better than MEG

1. MEG II experiment

2. LXe γ -ray detector

3. R&D of MPPC

4. Detector construction

5. Summary

MEG LXe γ -ray detector

- LXe \(\gamma\)-ray detector was successfully operated in the MEG experiment.
 - □ 900 ℓ LXe detector
 - Scintillation light readout by 846 PMTs
- Advantages of LXe
 - High light yield (~75% of Nal)
 - Fast ($\tau_{\text{decay}} = 45 \text{ns for } \gamma \text{-ray}$)
 - High stopping power $(X_0=2.8cm)$
 - Uniform (liquid)
- Disadvantages of LXe
 - VUV (Vaccum UltraViolet) scintillation light ($\lambda = 175$ nm)
 - High purity is needed
 - Low temparature (165K) is required

16% QE for $\lambda = 175$ nm

LXe Detector upgrade

We are upgrading LXe detector for MEG II to significantly improve the performance.

- We will replace 216 2-inch PMTs on the γ -entrance face with 4092 12×12 mm² MPPCs.
 - Better granularity
 - Better position resolution
 - Better uniformity of scintillation readout
 - Better energy resolution
 - $lue{}$ Less material of the γ -entrance face
 - Better detection efficiency

LXe Detector upgrade

- Layout of the PMTs will also be changed
 - Improve the uniformity of the scintillation readout
 - Decrease energy leakage

VUV-sensitive large area MPPC

- MPPC for MEG II LXe detector
 has been developed in collaboration
 with Hamamatsu Photonics K.K.
- UV-sensitive (PDE ($\lambda = 175$ nm) > 15%)
 - Scintillation light of Xe is in VUV range
 - Realized by removing the protection layer of resin, optimizing optical matching b/w LXe and sensor surface, and thinning contact layer.
- S10943-4372

 50 μm pitch pixel
 crosstalk and afterpulse for protection
 suppression
 metal quench resister

 ceramic package

Hamamatsu

- Large sensitive area $(12 \times 12 \text{ mm}^2)$
 - To keep the number of readout channels manageable
 - Discrete array of four 6×6 mm² chips
 - Four chips connected in series at readout PCB to reduce long time constant.

Signal transmission

- We have developed signal transmission system.
 - It can transmit \sim 5000 ch signals.
 - PCB have coaxial-like structure for good shielding from external noise, high bandwidth, and low crosstalk.
- "coaxial-like structure"

 SIGNAL

 GROUND
- Feedthrough is based on PCB to realize high density transmission.

New DAQ board, WaveDREAM, is being developed to cope with increased number of channels.

PCB-based feedthrough

Expected performance

- Detector performance has been estimated by MC simulation.
- Reconstruction algorithm is optimized to MEG II.
- Significant improvement of all resolutions and efficiency are expected.

Detector performance for signal γ -ray

	MEG (measured)	MEG II (simultaed)
Efficiency	65%	70%
Position	~5 mm	~2.5 mm
Energy	~2%	0.7 - 1.5%
Timing	67 ps	40 - 60 ps

1. MEG II experiment

2. LXe γ -ray detector

3. R&D of MPPC

4. Detector construction

5. Summary

MPPC Performance measurement

- Basic performance of MPPC have been measured by using 2l LXe chamber.
 - LED and alpha source are used as light sources
 - 1 p.e. peak is clealy resolved for large area (12×12 mm²) MPPC.

(not to scale) Alpha **MPPC** source 25mm **LED** anti-reflection tube

Example of the charge distribution using LED

Series connection

- Large sensitive area leads to longer time constant
 - Timing resolution and pileup elimination performance of our final detector can be affected.
- We have achieved sufficiently short timing constant by using series connection.

Performance of MPPC

Excellent performance of MPPCs have been measured.

- \square Gain: 8.0×10⁵ (@ Vover=7V, series connection)
- □ Low crosstalk probability (~15% @ Vover=7V) and wider operation voltage thanks to the crosstalk suppression
- \square Sufficient PDE for Xe scintillation light (PDE > 15%)

Energy resolution

- Energy resolution for scintillation light has been measured as a function of # of p.e by changing geometrical acceptance with several setups.
- We confirmed that energy resolution improves as 1/Sqrt(# of p.e.) at least down to 1.4% at $\sim 10^4$ p.e.
- Difference from the statistical expectation will NOT limit the performance of our detector.
 Energy Resolution vs Photon Statistics

Mass test in LXe

Prototype chamber

- 568 prototype MPPCs were tested in LXe
 - Check the properties of MPPCs
 - Breakdown voltage, gain, PDE
 - Test readout system
 - PCB, cable, feedthrough

MPPCs mounted on PCBs

Result of mass test in LXe

We confirmed that MPPC, PCB, and feedthrough work properly in LXe for most of the channels.

- We can see a clear 1 p.e. peak.
- Some bad channels were found.
 - Most of the bad channels are found to be due to the bad connection in the signal readout system (cables at connectors etc...).
 - We have improved the design and assembling procedure for the final detector.

Example of the charge distribution using LED

PCB for PCB-based feedthrough

Direct soldering of the cables instead of connectors

Angular dependence of PDE

- We found that PDE has larger incident angle dependence.
 - Larger than the angular dependence of the reflectance at the Si surface.

- Effect to the final detector performance has been estimated by MC simulation.
 - Reconstructed depth is biased to shallower, if the larger angular dependence is NOT correctly included in the reconstruction.
 - We are planning to measure the angular dependence in a dedicated setup.

1. MEG II experiment

2. LXe γ -ray detector

3. R&D of MPPC

4. Detector construction

5. Summary

Mass production of MPPCs

Production of 4200 final model MPPCs finished in October 2015.

We have measured I-V curve for all chips (4180x4) to reject bad MPPC.

Breakdown voltage, Current @ Vover=5V, shape of I-V curve

We confirmed the normal I-V curves and breakdown voltages for most of the channels.

- Breakdown voltage
- htemp
 Entries 16720
 Mean 4.866
 RMS 0.09443

 1
 4.5 5 5.5 6 6.5

 V(breakdown) -

V(recommended by HPK)

- We found 31 bad chips (0.2% of all MPPC chips).
 - There are three kinds of bad chips.

Bad chips will not be used in the final detector.

Detector construction

- Support structures for MPPC
 have already been produced.
- Detector assembling is on going.

Detector construction

Production of the support structure for PMT is in progress.

- External heat inflow is expected to increase due to ~4000 MPPC signal cables.
- New powerful refrigerator will be installed.
 Sufficient coling power (430W @165K)
 have been confirmed.

Summary

The performance of the LXe detector in the MEG experiment will be greatly improved with a highly granular scintillation readout with MPPCs.

- We have developed a VUV-sensitive large area MPPC, and an excellent performance has been confirmed.
- The construction of the final detector will finish June. Liquefaction and purification of Xe will take 3-4 months. Operation test will start this autumn.