

Università degli Studi di Milano - Bicocca INFN di Milano - Bicocca

The FLARES project: an innovative detector technology for rare events searches

L. Gironi on behalf of the FLARES collaboration

14th Vienna Conference on Instrumentation Vienna, Feb 15 - 19, 2016

Neutrinoless Double Beta Decay (0vDBD)

0vDBD

$$(A,Z) \rightarrow (A,Z+2)+2e^{-}$$

- Not allowed in Standard Model ($\Delta L=2$)
- The decay occurs only if neutrinos are Majorana particles
- Requires neutrino is a massive particle
- The decay rate depends on the "effective Majorana mass"

$$\left(T_{1/2}^{0\nu}\right)^{-1} = F_N \frac{\left|\left\langle m_{\beta\beta}\right\rangle\right|^2}{m_e^2}$$

Nuclear factor of merit

2vDBD

$$(A,Z) \to (A,Z+2) + 2e^{-} + 2\overline{\nu}$$

- Allowed in Standard Model
- Already observed for several nuclei (half-lives of the order $10^{18} 10^{21}$ y)

Neutrinoless Double Beta Decay (0vDBD)

- Possible for ~35 nuclei, only ~10 really interesting
- Extremely rare process $(T^{0v}_{1/2} > 10^{24} 10^{25} \text{ y})$

Luca Gironi

Vienna, Feb 15-19, 2016

Detector sensitivity for rare events searches

Sensitivity: the process half-life corresponding to the maximum signal that could be observed (over the background fluctuations) at a given statistical C.L..

'Zero' background experiments

$$\left| S_{0B} \right| = \ln 2 \cdot N_{\beta\beta}^{eff} \cdot \frac{T}{2.8} \propto M \cdot T$$

Experiments with background

$$S_B = \ln 2 \cdot N_{\beta\beta}^{eff} \cdot \sqrt{\frac{T}{M \cdot B \cdot \Delta}} \propto \sqrt{\frac{M \cdot T}{B \cdot \Delta}}$$

Critical experimental parameters: M, T, B, Δ

Live Time and Mass

Live Time

- It could be considered a **constant** since commonly live time of **5-10** y are used (it is hard to think to data taking much longer)
- The duty cycle must be optimized in order to have live time \approx data taking.

Mass

Since the live time is fixed (e.g. 5 y), the maximum sensitivity reachable (i.e. zero background experiments) depends only on the number of isotope nuclei:

$$M_{ISO} \approx 10^{-2} kg$$
 \rightarrow $N_{\beta\beta}^{eff} \approx 5 \cdot 10^{-26}$ \rightarrow $S_{0B} = \ln 2 \cdot N_{\beta\beta}^{eff} \cdot \frac{T}{2.8} \approx 5 \cdot 10^{-26} y$

Low cost mass scalability and high isotopic abundances are mandatory for future experiments!!!!

Selection of isotopes with high natural abundance and enrichment.

Energy resolution and background – Toy MC

Toy MC assumptions:

- Isotope mass = 10^3 kg
- $T^{0v} = 10^{27} \text{ y}$

- Live Time = 5y
- Detector efficiency = 1

Energy resolution and background – Toy MC

Toy MC assumptions:

- Isotope mass = 10^3 kg
- $T^{0v} = 10^{27} \text{ y}$

- Live Time = 5y
- Detector efficiency = 1

Energy resolution and background + 2vDBD – Toy MC

Toy MC assumptions:

- Isotope mass = 10^3 kg
- $T^{0v} = 10^{27} \text{ y}$

- Live Time = 5y
- Detector efficiency = 1

• $T^{2v} = 10^{21} y$

Energy resolution and background + 2vDBD – Toy MC

Energy resolution

0vDBD experimental sensitivity - Inorganic scintillator

M	 Flexibility in the choice of the 0vDBD candidate (optimization of the isotopic abundance) Very high detection efficiency (source=detector) Mass scalability
Т	• High duty cycles (~100%)
В	 Flexibility in the choice of the 0vDBD candidate (Q-value in a low background region) Alpha background reduction thanks to pulse shape discrimination scintillation quenching factor for alpha particles as low as 0.2 Can be grown with high intrinsic radiopurity
Δ	• So far the limiting factor for the use of this technique for the 0vDBD searches

The main challenge for FLARES is to demonstrate to be able to reach energy resolution of $\sim 1-2\%$

Luca Gironi Vienna, Feb 15-19, 2016

The choice of the compound

0vDBD candidates with good isotopic abundances (>5%) and transition energy above most intense γ line from natural radioactivity (2615 keV, ²⁰⁸Tl)

Candidates	Q [keV]	i.a. [%]	
¹¹⁶ Cd	2814	7.5	
$^{82}\mathrm{Se}$	2996	8.7	
$^{100}\mathrm{Mo}$	3034	9.6	

Isotope	Available scintillating crystals
$^{116}\mathrm{Cd}$	$\mathrm{CdWO}_4,\mathrm{CdMoO}_4$
$^{82}\mathrm{Se}$	ZnSe
$^{100}\mathrm{Mo}$	${ m CaMoO_4, ZnMoO_4}$

Inorganic scintillating crystals

Many scintillating crystals show a light yield increase as the temperature is lowered

	${f CaMoO_4}$		CdWO_4		
	300 K	120 K	300 K	120 K	
Density [g/cm3]	~4.3		~7.9		
Emission maximum [nm]	520		480		
Light yield [ph/MeV]	~8900	~25000	~18500	~33500	
Scintillation decay time [µs]	18	190	13	22	

Potential energy resolution with scintillators

Assuming a light yield of 20000 ph/MeV at 120 K, a reasonable value for many scintillators, at the Q value of many interesting 0vDBD candidates (3 MeV):

$$R_{stat} = \frac{2.355}{\sqrt{3 \cdot 20000}} = 0.96 \% \equiv 29 \text{ keV (FWHM)}$$

Not limited by statistics if all scintillation photons are detected!

The key point: avoid resolution degradation when the crystal is coupled to a proper photodetector

Silicon Drift Detectors (SDDs) as photodetectors

C. Fiorini et al., IEEE Transaction on Nuclear Science 60 (2013)

Quantum efficiency of commercial phototubes ~ 35%

SDDs show high quantum efficiency (~80%) and, at the same time, low electronic noise (especially at low temperature)

 $ENC_e = 3.1 e^- r.m.s.$

by calculating the ENC for $1~\rm cm^2~SDD$ operated at $120~\rm K$

Expected energy resolution: CaMoO₄ case

$$R(FWHM) = \sqrt{R_{stat}^2 + R_{noise}^2} \cong 2.355 \sqrt{\frac{1}{\alpha_{ph} N_{ph} \varepsilon_{Q}} + \frac{N_{SDD} ENC_{e}^2}{\alpha_{ph}^2 N_{ph}^2 \varepsilon_{Q}^2}} = 1.15 \%$$

$$\begin{split} N_{ph} &= 75000 \text{ (for 3 MeV for CaMoO}_4 \ @ \ 120 \text{K}) \\ \alpha_{ph} &= 70\% \text{ (collection efficiency from MC simulation)} \\ \epsilon_Q &= 80\% \text{ (SDD quantum efficiency)} \\ N_{SDD} &= 40 \text{ (number of 1 cm}^2 \text{ SDDs for a Ø 5 cm crystal)} \\ ENC_e &= 3.1 \ e^{\cdot} \text{ r.m.s. (noise of a single 1 cm}^2 \text{ SDD)} \end{split}$$

at 3 MeV: $\Delta E \text{ (FWHM)} = 35 \text{ keV}$

for one ${\rm CaMoO_4}$ crystal coupled to an array of 40 SDDs (1 cm² each) operated at 120 K

With this detector concept it would be possible to build large mass compact structures of high performing detectors

Scintillating crystals for single detector module

We are currently working on:

- Selection of a producer of high quality crystals: CaMoO₄ and CdWO₄
- Study of radioactive background within the chosen crystals
- Low temperature (~100K) measurements
- Optimization of the light collection efficiency

Relative light collection gain (CdWO₄ + PMT + 137 Cs)

Teflon-1 + VM2000	1.31	Teflon-5	1.37
Teflon-5 + VM2000	1.35	Teflon-10	1.41

 ${\rm CaMoO_4}$ 330g (Ø=45mm, h=50mm)

SDD geometries

We are testing the performance of some SDDs produced at FBK in Trento - in collaboration with INFN-Ts - for the ReDSoX project (not optimized for FLARES)

n side p side

Measured SDD Quantum Efficiency

A new SDD run with thin entrance window has been produced for ReDSox: should show improved quantum efficiency at the λs of interest for FLARES. Next run: anti-reflecting coating will be added.

First tests: square SDD

square cell of 25 mm² area

⁵⁵Fe source irradiating the SDD cell directly

First 'cold' tests: square SDD at ~150 K

Square cell of 25 mm² area (²⁴¹Am source)

System not optimized

First tests: hexagonal SDD

7 hexagonal cell array ("margherita")

55
Fe (T= 253K; sh = 1 μ s)

⁵⁵Fe source directly facing a single SDD cell

Not yet measured at lower temperature

Energy [keV]

First scintillation light readout

SDD + CsI(Tl) scintillator

137Cs measurement of a single SDD cell of the exagonal array optically coupled to a very small CsI(Tl) cylindrical scintillator (3mm dia., 10mm height) 137 Cs (T= 253K; sh = 6 μ s)

Energy [keV]

By simply scaling this result at 3 MeV energy, the 1-2% goal seems achievable!

Conclusions and perspectives

- The FLARES detector concept offers in a single device all the demanding features of an ideal 0vDBD experiment: energy resolution, low cost mass scalability, isotope choice flexibility, background suppression tools.
- The same detector concept may be applied to other physics measurements as well: Dark Matter searches, neutrino-nucleus interactions, ...
- The project has just started: preliminary results are very encouraging!

FLARES collaboration:

- S. Capelli, L. Gironi, E. Previtali, M. Sisti (Università & INFN Milano-Bicocca)
- C. Labanti, R. Campana, M. Marisaldi (INAF/IASF & INFN Bologna)
- F. Fuschino, G. Baldazzi, L. Riganese, M. Zuffa (Università & INFN Bologna)
- Y. Evangelista, M. Feroci (INAF/IASF & INFN Roma 2)
- V. Bonvicini, A. Rashevsky, A. Vacchi, G. Zampa, N. Zampa (INFN Trieste)

BACK UP SLIDES

FLARES project

Approved and funded by INFN-CSN5 to prove the detector principle Start of research activity: January 2015

Collaboration between: INFN-Milano Bicocca, INFN-Bologna, INFN-Trieste Synergy with REDSOX experiment for SDD development

Eur. Phys. J. C (2014) 74:3151 DOI 10.1140/epjc/s10052-014-3151-5 THE EUROPEAN PHYSICAL JOURNAL C

Regular Article - Experimental Physics

A flexible scintillation light apparatus for rare event searches

V. Bonvicini¹, S. Capelli^{2,3}, O. Cremonesi³, G. Cucciati², L. Gironi^{2,3}, M. Pavan^{2,3}, E. Previtali³, M. Sisti^{2,3,a}

Received: 24 July 2014 / Accepted: 22 October 2014

© The Author(s) 2014. This article is published with open access at Springerlink.com

¹ INFN-Sezione di Trieste, 34149 Trieste, Italy

² Dipartimento di Fisica, Università di Milano-Bicocca, 20126 Milan, Italy

³ INFN-Sezione di Milano-Bicocca, 20126 Milan, Italy

Time response and energy resolution - $CaMoO_4$

Time resolution is on the 10 ms scale (not a problem for a rare event search)

Inorganic scintillating crystals

Property	$CaMoO_4$		CdWO ₄		CaF ₂ (Eu)	
	300 K	120 K	300 K	120 K	300 K	200 K
Atomic mass [g/mol]	200		360		78	
Density [g/cm ³]	~4.3 [42]		7.9 [37]		3.2[26]	
Melting point [°C]	~1445 [42]		1271 [37]		1418 [38]	
Lattice structure	Scheelite		Wolframite		Fluorite	
Energy gap E_g [eV]	4.0 [26]		4.2 [26]			
Emission maximum λ_{max} [nm]	520 [42]	~530[36]	480 [37]	480 [26]	435 [38]	
Light yield [ph/MeV]	~8900[36]	\sim 25000 [36]	~18500 [26]	~33500 [26]	24000 [39]	~26400 [40]
Scintillation decay time [µs]	$\sim 18[36]$	~190[36]	13 [37]	~22 [26]	0.9 [39]	
Refractive index	1.98[36]		2.2–2.3 [37]		1.44[39]	
Absorption length [cm]	~60		~ 60			

SDD electronic noise

$$ENC = \left[\frac{k_1 \cdot \langle e_w^2 \rangle \cdot (C_d + C_i + C_p)^2}{\tau} + k_3 A_{1/f} (C_d + C_i + C_p)^2 + 2k_2 q I_l \tau \right]^{1/2}$$

$$\begin{split} &C_{\rm d} = 0.5 \text{ pF (1 cm}^2 \text{ SDD)} \\ &C_{\rm i} = 1.0 \text{ pF (FET)} \\ &C_{\rm P} = 0.5 \text{ pF (parasitic)} \\ &<\!\!e_{\rm w}^{\,2}\!\!> = 10^{\text{-}18} \, \text{V}^2\!/\text{Hz (FET @ 120K)} \\ &A_{1/\!f} = 0 \text{ (neglectable for JFET)} \\ &I_{\rm l} = 10^{\text{-}14} \, \text{A (SDD and JFET @ 120K)} \end{split}$$

 $ENC_e = 3.1 e^- r.m.s.$

for $1~\text{cm}^2~\text{SDD}$ operated at 120~K

Hypothesis:

one cylindrical crystal of 5 cm diameter and 5 cm height: the two circular surfaces are covered with ~20 SDD cells of ~1 cm² of area each

SDD:

- very low capacitance at the electrode collecting the signal charge, which is independent of the active area of the device
- no multiplication mechanism

• low electronic noise

- avoid statistical spread of the signal
 - high dynamic range

Photon and electron response in NaI crystals

Studies of the light response

Photon and electron response in CdWO₄ crystals

Luca Gironi