

The wide-aperture gamma-ray telescope TAIGA-HiSCORE in the Tunka Valley: design, composition and commissioning.

Oleg Gress (for the TAIGA Collaboration)

O.A.Gress^b, N.M.Budnev^b, I.I.Astapovⁱ, P.A.Bezyazeekov^b, A.G.Bogdanovⁱ, V.Boreyko^j, M.Brückner^k, A.N.Dyachok^b, S.N.Epimakhov^f, E.A.Fedoseev^b, A.V.Gafarov^b, N.Gorbunov^j, V.Grebenyuk^j, A.Grinuk^j, O.G.Grishin^b, D.Horns^f, A.L.Ivanova^b, A.Kalinin^j, N.I.Karpov^a, N.N.Kalmykov^a, Yu.A.Kazarina^b, N.V.Kirichkov^b, S.N.Kiryuhin^b, R.P.Kokoulinⁱ, K.G.Komponiestⁱ, E.E.Korosteleva^a, V.A.Kozhin^a, M.Kunnas^f, L.A.Kuzmichev^a, R.Mirzoyan^{e,b}, R.D.Monkhoev^b, R. Nachtigall^f, A.L.Pakhorukov^b, M.I.Panasyuk^a, L.V.Pankov^b, A.A.Petrukhinⁱ, V.A.Platonov^b, V.A.Poleschuk^b, E.G.Popova^a, A.Porelli^h, V.V.Prosin^a, V.S.Ptuskin^g, G.I.Rubtsov^c, A.A.Silaev^a, A.A.Silaev(junior)^a, A.V.Skurikhin^a, V.Slucka^j, C.Spiering^h, L.G.Sveshnikova^a, V.A.Tabolenko^b, B.A.Tarashchansky^b, A.Tkachenko^j, L.Tkachev^j, M.Tluczykont^f, D.M.Voronin^b, R.Wischnewski^h, A.V.Zagorodnikov^b, V.L.Zurbanov^b, I.I.Yashinⁱ

a - Skobeltsyn Institute of Nuclear Physics MSU, Moscow, Russia; b - Institute of Applied Physics, ISU, Irkutsk, Russia; c - Institute for Physics, Munich, Germany; f - Institute for Nuclear Research of RAN, Moscow, Russia; d - Dipartimento di Fisica Generale University of Hamburg, Germany; f - Institute for Nuclear Research of RAN, Moscow, Russia; d - Dipartimento di Fisica Generale University of Hamburg, Germany h - DESY, Zeuthen, Germany; i - NRNU MEPHI, Moscow, Russia; j - JINR, Dubna, Russia; k - Institute for Computer Science, Humboldt-University, Berlin, Germany.

The new TAIGA-HiSCORE non-imaging Cherenkov array aims to detect air showers induced by gamma rays above 30 TeV and to study cosmic rays above 100 TeV. TAIGA-HiSCORE represents an integrating air Cherenkov detector stations with a wide field of view (0.6 sr), placed of 100 m from each other. They cover an area of initially ~ 0.25 km² (array prototype) to ~ 5 km² at the final phase of the experiment. Each station includes 4 neighbored PMTs with 20 or 25 cm diameter, equipped with light guides shaped as Winstone cones. We describe the design, specifications of the read-out, DAQ and control and monitoring systems of the array. The present 28 detector stations of the TAIGA-HiSCORE engineering setup are in operation since September 2015.

http://www.taiga-experiment.info

PMTs: EMI ET9352KB, Hamamatsu R5912 and R7081. A single detector station consists of 4 PMTs with 6 dynodes that yield a gain 10⁴ at a HV=1.4 kV. Each PMT is equipped with a light collector (Winston cone) made up of ALANOD 4300 UP material with a reflectivity of 80%.

Monitoring of all Station DAQ:

- Power Suplly AC 220V Switch-Off/On
- Thermostabilization mode control
- Display of the DAQ Temperature
- Load current monitoring

DRS-4

- A custom-made synchronization technique: distribution of 100 MHz clocks over separate optical fibers from the array center.

The TAIGA-HiSCORE array is part of the gamma-ray observatory TAIGA (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy, \rightarrow see: N.Budnev. Poster Board#: 3).

The non-imaging air Cherenkov technique is complementary to the standard imaging approach. It allows larger collection areas of several square kilometers at a comparatively moderate cost in number of read-out channels.

Its operating principle is based on the sampling of the density and timing (arrival-time and spread) of the air shower-front with distributed arrays of detector stations.

Goal: Search of the VHE gamma-ray sources as objects of the cosmic ray pevatrons, i.e. Galactic PeV accelerators.