
Anode charge-up in resistive Micromegas

and its quenching effect on spark development

Vienna Conference on Instrumentation, 15-19 Feb. 2016

M. Chefdeville (CNRS/LAPP), T. Geralis (NCSR Demokritos), M. Titov (CEA/Irfu)



2

Intro

This is a side-study of our main project : Micromegas calorimetry
More specifically Micromegas for a LC-SDHCAL or a HL-LHC forward detector

Calorimetry = large energy deposits = we need spark protections
Diodes on PCB are not elegant for a 106 channel system
+ spark dead-time prohibitive for high-rate applications
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Supress sparks with R-electrodes
Several on the market !
R-Layer on the readout electrodes (à la RPC, GridPix)
R-layer + Insulator (à la Dixit)
R-layer + metalic grid (à la Rwell THGEM)
R-layer + Insulator + through-PCB via 
Embedded-R

Last one turned out to be surprisingly interesting...

R-layer
RO-pads

R-layer

Insulator

RO-pads
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Embedded resistors

Charge evacuation is vertical
No spread of signal to neighboring pads to fully exploit RO granularity
LC-calorimetry = imaging calorimetry = SDHCAL with 1x1 cm2 cells

Resistance can be tuned (shape of embedded-R)
Nice to optimise for high-rate capability !
Which brings the question :

How low can we go with the resistance ?
Too high : RPC-like rate capability and no spark
Too low : MPGD-like rate capability with sparks

PS : we have segmented pads,
so we don't mind low-R

Charge can not be shared with neighbors

First : try to predict what happens… not sure !
Quickly after : make prototypes of ≠ R

R-pad

Insulator

R-embedded

Insulator

RO-pad

Via

Via
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Spark quenching

Spark development
Is a diverging process involving an initiating avalanche + its successors
Initiating avalanche : traversing particles (or mechanical imperfections, edges…)
Successors : photon-feedback, photo-ionisation of impurities in the gas

Our (current) understanding
R-surface charges-up which reduces the field and stops the photon feedback
After some time, the excess charge is evacuated and the field is restored

Avalanche 1 Avalanche 2

V = 0 V
G = 5000

V = 2 V
G = 4700

V = 30 V
G = 2000

Avalanche N

UV 
photon

...



6

Spark quenching & timing

Relaxation time (τ) should not be too short !
Otherwise successors will feel the full field (= metallic anode)

Toy Monte Carlo of Efield versus time : large field drop when τ > Δt (= 1 ns here)

Δt = time interval between 
successors = e-drift time in 
ampli. gap ( ~ 1 ns)

Feedback : ~ 3 photoe- from 
intiating avalanche (Poisson)

Successors are multiplied by 
a factor that depend on the 
anode voltage

Anode voltage :
(+) charge from gas gain
(–) charge drained out
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Spark quenching & timing

τ << Δt Field readily restored, quickly goes to spark, few successors
τ ~ Δt Field oscillations, instable regime, several successors
τ >> Δt Field strongly reduced, spark is avoided, few successors

The critical value of τ is given by the timescale of the avalanche development.

Δt = 1 ns

128 μm gap
40 kV/cm
Ar/CO2 90/10
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Testing the model

Build prototypes of different τ by changing the value of R
Use paste of different resistivity (100 kΩ/□ & 1 kΩ/□)
Use embedded resistors of different pattern (shape & number of via)

Not exactly sure how this will affect the value of τ  
= RC only in case of an ideal geometry :
infinite R-layer (grounded on sides) on insulator

Complicated charge motion (only way out is the via)

Top via

Bt. via

Avalanche
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The prototypes

Pad boards
10X10 matrix of 1x1 cm2 pads
Routing on the outside to a 'Gassiplex' connector (96 channels)

R-structures and Bulk-Micromegas
Serigraphy and photolithography at CERN MPGD workshop

Star Mirror Snake
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Interlude 1 : energy resolution

We are not breaking records !
Top coverlay pressed on the embedded-R
Pattern probably transferred to the R-pad surface = poor ampli. gap uniformity
Can be improved by polishing

Digital calorimetry = counting hits…
Resolution does not matter

InGrid
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Interlude 2 : signal proportionality

Mesh to R-pad capacitance ~ 70 nF/m2 : loss of proportionality for point-like events ?
e.g. when several primary electrons arrive in the same mesh hole
Last arriving electrons might feel a reduced field = non-linear response

Drift distance above/below GEM injector ~ 10/3 mm (Ar/CO2 90/10)
230 primaries in ~5 GEM holes, each secondary in ~ 5 mesh holes
Response is linear up to testable GEM gains

Std.

Res.
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Measuring the relaxation time

Let's use an Xgun ! 
The detector current will saturate at high rate, this should tell us about τ …

Mesh current : I ~ I0 / (1 + B R I0) 
I = Φ Np G = Φ Np G0 exp(-B ΔV) = I0 exp(-B R I) ~ I0 (1 - B R I)
The asymptotic current does not tell us about τ, only about R.

G1
G2<G1
G3<G2

(left)
Toy MC
Φ = 1 GHz
τ = 100 ns

(right)
Xgun data
Φ < 80 MHz
τ = ?

Star100
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Measuring the resistance

Mesh current : I ~ I0 / (1 + B R I0) 
The asymptotic current does not tell us about τ, only about R.
Replacing Ic by (Φ Np Gc), one can fit the gain and R to the data

Nota Bene : the X-ray beam (8 keV) collimation is 8 mm2

The prototypes withstand rates up to 10 MHz/mm2 with no sparks
The one with R = 1 MΩ shows little deviations from linearity up to 1 MHz/mm2

= Efficiency plateau up to 1 MHz/mm2

Star
G ~ 2100
R ~ 1 MΩ

Mirror
G ~ 900

R ~ 3 MΩ

Snake
G ~ 300

R ~ 40 MΩ
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Measuring the relaxation time, once again

We see only the steady regime and miss the initial current peak
Try a faster readout : reading power supply → recording pad-current on scope
Sensitive current-meter ('FemtoBox') available in RD51 lab. at CERN

With a non-resistive prototype, we measure a shutter time of ~ 110 μs
This means, the measurement is sensitive to relaxation time larger than 100 μs

fBox Scope

Std.
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Measuring the relaxation time, once again

We see only the steady regime and miss the initial current peak
Try a faster readout : reading power supply → recording pad-current on scope
Sensitive current-meter ('FemtoBox') available in RD51 lab. at CERN

With the highest-R prototype, we measure a relaxation time of ~ 1.3 ms
We fit τ to the data (implicitely implies that the current decay is exponential)

Std.

Snk100
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Extrapolating the relaxation time

Reminder : 6 prototypes
2 different R-paste (100 VS 1 kΩ/□)
3 different patterns (shape and number of via)

Likely : τ (Snake1) = 10-2 . τ (Snake100) ~ 10 μs
Capacitance is the same for a given pattern

Likely : τ (Snake) > τ (Mirror) > τ (Star)
Indeed : R-embedded decreases (40-3-1) and Nvia increases (1-2-4)
Lacking a diffusion model, difficult to be more quantitative

R-pad

Insulator

R-embedded

Insulator

RO-pad

Via

Via

Star Mirror Snake
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Measuring sparks

Create the 'conditions' : 
High-energy (200 GeV) high-intensity (0.5-1-1.5 MHz) pion beam

Directed at a 2 λint thick steel absorber, prototype placed behind
Monitor mesh current, erratic behaviour signs occurrence of sparks

Compare trends from different prototypes

Std.
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Measuring sparks

Create the 'conditions' : 
High-energy (200 GeV) high-intensity (0.5-1-1.5 MHz) pion beam

Directed at a 2 λint thick steel absorber, prototype placed behind
Monitor mesh current, erratic behaviour signs occurrence of sparks

Compare trends from different prototypes

Star1
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Measuring sparks

Compare trends from different prototypes : mesh-current distribution in spills
Indicate a Loss of spark quenching for the prototype of lowest R

100 
kΩ/sq.

1 
kΩ/sq.

Snake Mirror Star Spider

Std.
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Outro. 1

Naive extrapolation of τ based on R-ratio between Snake100 & Mirror1
Spark quenching is lost for τ shorter than 1 ms / 100 / 10 = 1 μs
Way larger than the time between successors of 1 ns but :

Extrapolated τ is probably over-estimated
Does not take into account the number of vias

Model Δt is probably under-estimated
Toy MC does not account for lateral dispersion of successor avalanches

To conclude, we need 
A better model of spark development (from 0-D to at least 2-D) → Δt
A model of charge diffusion on R-pad → τ

UV 
photon

UV 
photon
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Outro. 2

Spark-free operation at very-high rates (MHz/mm2) possible with embedded-R

Could be pushed even higher with 'closed' geometries, e.g. WELL-like
(as lateral photon feedback (or photo-ionisation) would be constrained)
Provided that each hole has its own embedded-R

Theoretical rate capability limit of such device could be Δt-1 / hole

 That is : 1 GHz / hole (for a 128 μm ampli. gap) or beyond with smaller gaps
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