(lntel) Look Inside”

HPC codes modernization using vector
and threading parallelism — part 2 (tools)

Zakhar A. Matveev, PhD,

Intel Russia, Intel Software and Services Group

May* 2015

gl

(lntel) Look Inside”

Code modernization:
Intel® Parallel Studio XE 2016 Beta

Intel® Parallel Studio XE

Faster code faster!

Vectorizing Compiler

Squeeze all the performance out of the latest instruction set Download Today

Threaded Performance Libraries Google:
Pre-vectorized, pre-threaded, pre-optimized “Intel Parallel

Vectorization Optimization and Thread Prototyping ~ Studio 2016"
Data driven design tools help you vectorize & thread effectively or go directly to:

High Level Parallel Models | //software.intel.com
Productive solutions for thread, process & vector parallelism /en-us/articles/

intel-parallel-studio-
xe-2016-beta

Parallel Performance Profilers
Quickly discover bottlenecks and tune for high performance

Threading Inspector
Find and debug non-deterministic threading errors

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta

Launching August 2015

Intel® Parallel Studio XE 2016 Suites

Vectorization — Boost Performance By Utilizing Vector Instructions /
Units

» [ntel® Advisor XE - Vectorization Advisor identifies new vectorization
opportunities as well as improvements to existing vectorization and highlights
them in your code. It makes actionable coding recommendations to boost
performance and estimates the speedup.

Scalable MPI Analysis- Fast & Lightweight Analysis for 32K+ Ranks

» |ntel® Trace Analyzer and Collector add MPI Performance Snapshot feature
for easy to use, scalable MPI statistics collection and analysis of large MPI jobs
to identify areas for improvement

Big Data Analytics — Easily Build IA Optimized Data Analytics
Application

= |ntel® Data Analytics Acceleration Library (Intel® DAAL) will help data
scientists speed through big data challenges with optimized IA functions

Standards - Scaling Development Efforts Forward

= Supporting the evolution of industry standards of OpenMP*, MPI, Fortran and
C++ Intel® Compilers & performance libraries

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Free Intel® Software Development Tools:

https://software.intel.com/en-us/qualify-for-free-software

Free Software Tools

Supporting qualified students, educators, academic researchers and open
source contributors

Academic Researcher Student »
For unfunded research (research not funded by grants). For current students at degree-granting institutions.

Educator Open Source Contributor
For use in teaching curriculum. For developers actively contributing to open source projects.

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

https://software.intel.com/en-us/qualify-for-free-software
https://software.intel.com/en-us/qualify-for-free-software
https://software.intel.com/en-us/qualify-for-free-software
https://software.intel.com/en-us/qualify-for-free-software
https://software.intel.com/en-us/qualify-for-free-software
https://software.intel.com/en-us/qualify-for-free-software
https://software.intel.com/en-us/qualify-for-free-software
https://software.intel.com/en-us/qualify-for-free-software
https://software.intel.com/en-us/qualify-for-free-software
https://software.intel.com/en-us/qualify-for-free-software
https://software.intel.com/en-us/qualify-for-free-software
https://software.intel.com/en-us/qualify-for-free-software
https://software.intel.com/en-us/qualify-for-free-software
https://software.intel.com/en-us/qualify-for-free-software
https://software.intel.com/en-us/qualify-for-free-software

Beta 2016 program : Call to Action

Participate in the Beta Program today!

= Register at -
bit.ly/psxe2016beta Parallel Studio XE

= Orsimply send e-mail to V' 4
vector_advisor@intel.com

Submit Feedback via Intel® Premier
Support

Tell us about your experiences using the
Intel® Parallel Studio XE 2016 Beta

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Intel® Advisor XE

Vectorization Optimization and Thread
Prototyping

In Beta

Data Driven Code Modernization and Optimization Sign-up!

For Vector and Threading Parallelism
Intel® Advisor XE — Vectorization Advisor

Have you:

» Recompiled with AVX2, but seen little benefit?
= Wondered where to start adding vectorization?
» Recoded intrinsics for each new architecture?

= Struggled with cryptic compiler vectorization messages?

Breakthrough for vectorization design
= What is blocking vectorization and why?

= Are my loops vector friendly?

= Will reorganizing data increase performance?

= |s it safe to just use pragma simd?

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Vectorization challenges

LLNL (Hornung, Keasler, 2013):

"Typical codes get less than 5% of their FP instructions SIMD-ized... multi-
physics codes - have thousands of small loops, which are all important”

Efficient vectorization is sometimes challenging:
* “Poor” baselines : solid gap
* “Ninja gap” as well
* Industry code complexities
* Vector productivity problem: “thousands of loops”
* Need to know both static and dynamic code characteristics

 Some codes: demand for expensive data layout
reorganization

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

“Vectorization Advisor”

1. “All the data you need in one place”.

Leverages Intel Compiler diagnostics, performance data and ISA
statistics.

2. Detects "hot” un-vectorized or “under vectorized” loops. Identifies
what is blocking efficient vectorization and why

3. Identify performance penalties and recommends fixes for them
(including OpenMP4.x)

4. Memory layout analysis: explore alternative data reorganizations

5. Increase the confidence that vectorization is safe

Beta program : started April'15.
Release: end of August ‘15.

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Vectorization Advisor.
Assist code modernization for x86 SIMD

1. Compiler diagnostics + Performance 2. Guidance: detect problem and
Data + SIMD efficiency information recommend how to fix it

nel loop. Improve performance by moving

Function Call Sites and Loopsa 18.7:;& ¥ 3_ “Accu rate" Tri p Cou nts: u nderstand nel loop. Read more at Vector Essentials,
Bl nnCEonlr o s parallelism granularity and overheads

H[loap in runCForallLarmbdaloops] 0,140
BV [loop in std:_Complex_base<double,struct C_double_complexs:i... g

- - Trip Counts 3] mory accesses in the source loop does not
Wectorized S3E; 33EZ loop processing Float3i; Floatdd data typs T T | | the compiler your memory access is aligned

Peeled loop: loop stwts were reordered Median Min Max Call Count

[H[loap in stdubasic_string <char, struct stdtichar_traits <chars class stdualla.., 00005 5

H[loop in stdubasic_string <char,struct stdtichar_traits <char, class steiallo., 00005 3 10 m m 12000000 at), 32);
[[loop in stdunum_put<char,class stdiostreambuf_iterator<charstruct st 00005 3 3 3 1000000
101 10 101 2000000
1000000 1000000 | 1000000 | 1
L] Ll .o
4. Loop-Carried Dependency Analysis 5. Memory Access Patterns Analysis
Site Name Site Function Site Info Loop-Carried Dependencies Strides Distribution Access Pattern
loop_site_203 runCRawloops runCRawloops.coc1063 € RAW:L No information available No information available
) loop_site_139 runCRawlLoops runCRawloops.coc622 No information available 399/ 36% / 250 Mixed strides
ID @ T}fpe Site Name Sources Maodules State loop_site_160 runCRawloops runCRawloops.coc925 No information available 100% /0% / 0% All unit strides
P Q Parallel site information site2 dotest2 cpp dqtest2 v Mot a problem | . o access Pattems
P2 @ Read after wiite dependency site2 dgtest2.cpp dqtest2 R New D © Stidev Type Source Modules Alignment
P3 @ Read after write dependency site2 dqtest2. cpp dotest2 ReNew =Pz @ 001 Uit stisde nmCRavd oops.coai/ lcals.Sxe
635 32 = (32 & 64-1) ;
Wiite after write dependency|site2 dqtest2.cpp dqtest2 | iNew 636 PLip] [0] += y[i2+32]:
K K) 637 plip]l [1] += z[j2+32];
F5 @ Wiite after wiite dependency site2 dgtestZ.cpp dgtest2 R Mew 638 i2 4= e[i2432];
. 639 32 += £[32+32];
P& @ wiite after read dependency Site2 dqrestz cpp clqtest2 Re hew w23 00 Unit siride runCRawLoops.coc638 Icals.exe
P7 @ ‘Wiite after read dependency site2 dqtest2 cpp; idle.h dqtest2 R Mew =1p30 -1575; -63; -26; -25; -1; 0; 1; 25; 26; 63; 2164801 Variable stride runCRawLoops.coc628 Icals.exe
626 il &= 64-1;
627 Jl &= 64-1;
628 plip] [2] += b[i1][i1];

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Data-Driven Threading Design
Intel® Advisor XE — Thread Prototyping

Have you:

. Tried threading an app’ bUt Seen little 1287 R LAO:;F.]Nllfren:Jaetri2?§e€1?oitsjﬁh:1;iiliﬂiin [Task)
performance benefit? o4 i s Duratin:

9 : T 0.008 0.008

= Hit a “scalability barrier"? Performance ¢ *1 &7 i oo oo

gains level off as you add cores? S A o b e nceommy
. ;&b Ea. - T o 25 25
* Delayed arelease that adds threading - . _ 125 125

because of synchronization errors?

Target CPU Count

Breakthrough for threading design:
= Quickly prototype multiple options

» Project scaling on larger systems

» Find synchronization errors before Add Parallelism with Less Effort,

implementing threading Less Risk and More Impact

= Separate design and implementation -

Design without disrupting development
http://intel.ly/advisor-xe

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

http://intel.ly/advisor-xe
http://intel.ly/advisor-xe
http://intel.ly/advisor-xe

Vectorization Advisor in action

Live Case Study with “DL-MESQO”

DL MESO

Computational fluid dynamics engine

 New mesoscopic simulation engine

* Applicable for problems such as inkjet printing and
steel production

 Lattice Boltzman Equation

Developed by EPSRC CPP5

* including Hartree, Oxford, Imperial College
* Michael Seaton at Hartree as major contributor

Workload characteristics:
- “Flat profile”, many small kernels
- Profiles are very diverse depending on input datasets

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Workflow

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Configure
Project

(Re-) compile just with “-g”

Intel Compiler 15.x, 16.x (recommended)

Build App in GCC, MS CL, older Intel Compiler also supported
Release Mode

v

Run Survey
Analysis

v

Run Trip Count
Analysis

v

Investigate
Loop(s)

Vv

Improve App
Performance

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Configure

Project

(Re-) compile just with “-g"

Intel Compiler 15.x, 16.x (recommended)
| Build Appin GCC, MS CL, older Intel Compiler also supported
“1 Release Mode

Run Survey
Analysis
Run Trip Count
Analysis
Investigate Mark for Deeper
Loop(s) Analysis
- |
Run Correctness Run MAP
Analysis Analysis
Improve App
Performance

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

e Right Data At Your
Fingertips

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

1. Compiler diagnostics + Performance
Data + SIMD efficiency information

If - Tatal

Function € and Loops. Time Tirme

H[loop in runCForalllambdalaaps

=R

[E3]

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Hot Loops: optimize one by one

Loops & | Vectorlssues Self Timew | Total Time | Loop Type

1+ [loop at IbpSUB.cpp:1280 in fPropagationSwap]] %1 Assumed depend... 1.691=00 1691=@ |5calar
pop at lbp B.cpp: 76 etEa i [ata e (0 5.4 i

i+ [loop at IbpGET.cpp:281 in fGetSpeedSite]] ¢ 2 Data type conversi.. 1027=0 1,047=1 Scalar
i+ [loop at IbpBGK.cpp:30 in fSiteFluid Collisy [l 0.599=10 0,599s1) Scalar
i: 0 [loop in LO_OUTPUT]] 0,150s1 0,150s| Scal
i+ [loop at IbpBGK.cpp:21 in fSiteFluid [0,119¢| 2479:@ 5c
i+ [loop at IbpSUB.cpp:1 264 in fProg] %1 Assumed depend 0,090=| 0,622z1
[loop at lbpGET.cppdd in fGet(] ' 3 Ineffective peel 0,080s1 0,080s | ized: Expand
1> [loop at IbpSUB.cpp:1276 in § [l 0,060<1 1,751=0
[loop at lbpGET.cppl52 i [¢ 2 Ineffectiv d.. 0.059s| 0,058s rized: Expand

Will only work through first Both loops were no

2 loops with max impact auto-vectorizec
rRela at” profile

Quickly focus on loops which really matter

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

O

timization Notice

The Right Data At Your Fingertips

Get all the data you need for high impact vectorization

Am | Trip Counts What prevents
vector? vectorization?

should | add vectorization and/for threading parallelism? & Intel Advisor XE 2016

iy m RILPEE L #° Refinerment Reports & Annotation Report] Suitability 2ort

ime: 54,445 || Wectorized || Mot Wectorized | FILTER: |2l Modules N Sources =%

. _ _ Tr‘ip o Vectorized Loops ~
Fungion Call Sites and Loops d | @ vectorlssues Self Timew | Total Tirne Counts Loop Type Wy Mo Wectorization? - —
ectu:u...| Efficiency |‘u’ectu:ur Lo

i [loop at stl_algo.hed 740 in stdutr .. [0170s1 3170:1 Scalar B non-vectorizable loop ins ...
=2 [laop at loppstlcpp:2d42 in 5234] ' 2 Ineffective peeledsrem.. 0.170s1 017051 124 Collapse Collapse B 4

20 [loop floopst cppi2d49ins.. [015051 Q15051 12 Wectorized (Body) A 4

2O [loop Mloopst.cpp:2443ins... [] 0.020s1 Q.020s1 4 Rernainder
120 [loop atopstl.cpp: 7300 inwvas_] | [017051 0.170s1 500 Scalar B vectorization possible but ... 4
[loop afopstl.cpp:3509 in s2 ... @ 1 High vector reqgister ... 0.160s | 0.160s| 12 Expand Expand AVX 8
lloop #Mopstl.cpp:3891 in 5279 @ ? Ineffective peeledfrem., 0.150s 015051 1254 Expand Expand BK g
loop M opstl cppi624D in 5414_] 0.1505 | 015051 12 Expand Expand B 4
0O [loog |_nurnerichi2d7 instd.. [% 1 Assurned dependency ... 015051 0.150:1 49 Scalar B vector dependence preve .., .

o €

What
vectorization
issues do |
have?

Which Vector
instructions are
being used?

Focus on

How efficient
hot loops

is the code?

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Assist user at different LoD and perspectives

END-USER GUIDANCE =

Fr loop was already vectorized AX Inserts; Extracts 128/256 Floatéd
i M [loop atru... 031051 0.310s1 [l Loop was vectorized AV Inserts; Extracts 128/256 Float6d
i-[loop atrunC... 0.309s| 2.679s| O volatile assignment was not vectorized. Try using no ... AVX Inserts; Extracts 1281256 Float64
[[loop at ru... 0.258s 1 0.258s1 <Expand to see more ..> AWX Extracts 128/256 Floated
[[loop atru... 0.240s1 0.240s1 <Expand to see more ...> AVX Inserts 128/256; 128 Floattd

<

Recomrrendations

Issues: 1
Recommendations: 2

Issue: Ineffective Peeled/Remainder loop(s) present

All or some source loop iterations are not executing in the loop bedy. Improve performance by moving source loop iterations from peeled/remainder loops to the loop body. Read more at Glossary and
Vector Essentials, Utilizing Full Vectors

Use a smaller vector length

ANALYSIS on WORKLOAD (high-level son s
L nza " n n . . n o
& Roots: Inserts: Extracts; Masked Sto Site Marne Site Function Site Info Loop-Carried Dependencies Strides Distribution Access Pattern
v [loop at nbody.cc:37 in main] 18100 1810:m [Vectorized (Body) 200 AV Square Roots; Inserts; Extracts; Masked Stores |00p_site_3 main nbody.cc:85 @ Raw:3 67% (1% / 3256 Mixed strides
2 [loop at nbody.cc:57 in main] 0,010s| oo0sl | [Peeled loop_site_7 main nbody.cci14 @ No dependencies found WE5% /75% 0% Mixed strides
i+ [loop at nbody.cc:34 in main] 0,000s! 180:@ [Scalar inner loop .. AVX Shuffles; Inserts; Extracts loap_site 5 main nbody.(c:za S Rraw:3 S0% £ 50% /0% Mixed strides
i+ [loop at nbody.cc:54 in main] 0,000s1 1820:@ [Scalar inner loop ..
4| — [
Source
% Loop)
34 SOURCE, ..
53] Stride
B fer (smaeria Gl o)] wf | and ASSEMBLY (low-level)
55 real dva = 0, dvy = 0, dvz = 0; -
55 //4pragna vector alvays T L T T @ogoo
El j=0;3 ; +H i
& e (| e 8 = [n]f LE -H:])4 At D ke n 4/ hwoid singularity and interaction with self
[loopjutinhoty ce: ol apmaiz] FE] const float softening = le-20:
Scalar loop. Not vectorized 24
No loop transformations were applied Fe] 4/ Mewton's law of universal gravicy
[loop at nbody.cc:57 in main] % const float dx = parcicle[}].x - particle[i].x; 44 iR REAH

Vectorized AVE loop processing Float32; Floaté4; Int32; UInt32 data { 27 const float dy = particle[j).y - pacrticle[i].v: 4 [R H

No loop transformations were applied Fal const float dz = parcicle[j].z - particle[i].z: 44 @112
58 if(jl=i) | 110,128ms B
50 zeal i = k(1] - &[], 4y = ¥[I] - y[i], dz = 2(3] - z[1]; | 26,77ms O s I broadcastes xam?, dvord per [::;::':;(h:s‘omc] Dperand e (bvies) on RIS
60 real dist2 = dx*dx + dy*dy + dz*dz; 100,042ms @8 1403Tcd% 26 vhroadcastsa xum5, dword prr [ebp+rcx®8+0x18] 4 o
6l real mOverDist3 = m[j] / (dist2 * Sgrt{ dist2)); 710,194ms N 04037c4al 38 vbroadcascss xumd, dword per [Ebp+rcat8+0xs] 4 [#]H
62 dvx += mOverDist3d * dx; 289,894ms (I 1403748 27 vbroadcastss xum9, dword prr [rbprcx®i+lcd] 4 o
63 dvy += mOverDiat3 * dy; 259,742ms (N 6 xaml3, dword prr [cbp+rcx*d) 4 on
54 dvZ += m0verDiats * dz; 50127ms B 01403Tcdbb 20 vmovups yaml0, ymaword ptr [rip+0x15d2¢2] 32 [

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

2.
s It safe to vectorize:
Tough problem #1 for not yet

vectorized codes.

4. Loop-Carried Dependency Analysis

Type Site Nama Sowrces Modules State

&

@ Parallel site information site2 dgtest2.cpp dqtest2 + Mot a problem
@ Read after wiite dependency site2 dgtest2.cpp dqtest2 R hew
@

P3 Read after write dependency site2 dgtest2.cpp dqtest2 Re hew
“ ¥ |Wiite after write dependency | site2 dqtest2.cpp

F5 @ wiite after write dependency site2 dqtest2.cpp dqtest2

PG @ Wiite after read dependency site2 dqtest2 cpp dqtest2

P7 @ Wiite after read dependency site2 dgtest2.cpp. idle.h dqtest2

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Data Dependencies — Tough Problem #1

s it safe to force the compiler to vectorize?

Data dependencies

for (i=0;i<N;i++) // Loop carried dependencies!

*C[i];// Need the ability to check if it

// it is safe to force the compiler

Issue: Assumed dependency present
The compiler assumed there is an anti-dependency (Write after read - WAR) or true dependency (Read after write - RAW) in the

loop. Improve performance by investigating the assumption and handling accordingly.

(> Enable vectorization
Potential performance gain: Information not available until Beta Update release
Confidence this recommendation applies to your code: Information not available until Beta Update release

The Correctness analysis shows there is no real dependency in the loop for the given workload. Tell the compiler it is safe
to vectorize using the restrict keyword or a directive.
Outcome

ICL/ICC/ICPC Directive IFORT Directive
#pragma simd or #pragma omp simd | IDIRS SIMD or 130MP SIMD | Ignores all dependencies in the loop
Ignores only vector dependencies (which is safest)

#pragma ivdep IDIRS IVDEP

Read More:
o User and Reference Guide for the Intel C++ Compiler 15.0 > Compiler Reference > Pragmas > Intel-specific

Pragma Reference >
o ivdep
o omp simd '

Optimization Notice

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Data Dependencies — Tough Problem #1

Dynamic check will *know* if indices overlap.

1) fSwapPairM (lbf[il*lbsitelength + l1*Ilbsy.nqg + m + half],
Ibf[ilnext*lbsitelength + 1*1bsy.nqg + m]);

Compiler Assumption:

i+ 0 [loop at IbpSUB.cpp:1280 in fPropagationSwap] B vector dependence prevents vectorization

2) fSwapPairM (lbf[il*lbsitelength + 1*lbsy.ng + m + half],
Ibf[ilnext*lbsitelength + 1*1bsy.nqg + m]);

Compiler Assumption:

i+ (0 [loop at IbpSUB.cpp:1280 in fPropagationSwap] @ vector dependence prevents vectorization

Both loops “equally bad” :
from static analysis/compilation “best knowledge”

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Data Dependencies — Tough Problem #1

Dynamic check *knows* if memory accesses really overlap.

1) £SwapPairM (1bf[il*lbsitelength + 1*lbsy.ng + m + half],
Ibf[ilnext*lbsitelength + 1*lbsy.ng + m]);

O [loop at IbpSUB.cpp:1280 in fPropagationSw ... @ Mo dependencies found

2) fSwapPairM (1bf[il*lbsitelength + 1*1lbsy.nq + m + half],
Ibf[ilnext*1lbsitelength + 1*1lbsy.nqg + m]);

O [loop at IbpSUB.cpp:1280 in fPropagationSw ... & RAW:1

@ Read after write dependency

Correctness Analysis: confirm dependencies are REAL

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

2.
Any speed-up out of there?
Use SIMD to make your code
faster, instead of slower.

1. Compiler diagnostics + Performance
Data + SIMD efficiency information

3. “Accurate” Trip Counts: understand
parallelism granularity and overheads

Trip Counts =
Median Call Count

101 12000000
3 3 3 1000000
101 10 2000000

1000000 000 | 1000000 1

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Vector Efficiency: my performance thermometer

all the data in one place Flapsed fime: 8,015

Loops — . : — il _ Self Time
Vecto... | Efficiency a Estimated Gain | Vect...| Co| | Traits ector Widths

[loop at IbpSUB.cpp: 280 in fPropagationS... AVX [13% | 10,53 4 0,53 BTends; Bxtracts, Inserts; Shuffles 128/256 23120
(T [loop at IbpGET.cpp:152 in fGetFracSite] avy | 0% |238 N\ & 234 Blends; Inserts; Masked Stores 128/258 0.030s1
[loop at IbpGET.cpp:42 in fGetOneMasshite] AVX |35$'E 2,86 g 2,19 256 0.100<1
[loop at IbpGET.cpp:78 in fGetTotMassSite] AVK |35$'E |2r35 8 279 256 0.010z!
[loop at IbpGET.cpp:334 in fGetOneDirecSp .. AV | 38% 13,05 8 207 TypeConversions 128/256 0,011s!
i+ [loop at |bpBGK.cpp:840 in fCollisionBGK] AVX | 100% | | 2.05)2 2,05 128 0,080

4

* Auto-vectorization: affected <3% of code
13% * With moderate speed-ups

* First attempt to simply put #pragma simd:
* Introduced slow-down

» Look at Vector Issues and Traits to find out

. i Upper bound: why
é;c?clieev: CC;/ ?Or:jge”;:ci(fice?]lgy 100% efficiency « All kinds of “memory manipulations”
Corresponds 4x gain Usually an indication of “bad” access
to 1x speed-up. (VL=4) pattern

Survey: find out if your code is “undervectorized” and why

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

3.
Tough problem #1 for already

vectorized codes

Non-Contiguous Memory — Tough Problem #2

Potential to vectorize but may be inefficient

= Unit-Stride access to arrays
for (i=0;i<N;i++)

A[i] = C[i]*D[i]; //Accessing array elements 1 by 1

= Non-unit-stride (constant stride) access to arrays
for (i=0;i<N;i+=2)

A[i] = C[i]*D[i]; //Incrementing “i” by 2: not unit stride
//Often indication of demand for AoS ->
// SoA conversion

» |ndirect reference in aloop
for (i=0;i<N;i++)

A[B[i]] = C[i]*D[i];//We have to decode B[i] to find out
//which element of A to reference

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Object-oriented programming

. b b
Class Point {float ° - ° -
XyZ'} -xyzxy X| Y| Z
Class Triangle {Point T[0]
a,b,c;}

Triangle T[100];

Point Cross(const Point& a, const Point& b) {
return Point(a.y*b.z-a.z*b.y, a.z*b.x-a.x*b.z,

a.x*a.y-a.y-b.x);

}

void ComputeNormals(Point normal[__restrict], const
Triangle p[], size_t n)
for(size_t 1=0; i<n; ++1)
normal[1] = Cross(p[i1].b-p[i1].a, pl[i1].c-p[i1].a);

Object oriented programming may inhibit SIMD

code generation

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Improve Vectorization

Memory Access pattern analysis

A Where should | add vectorization and/or threading parallelism?

Summary M SRS P Refinement Reports & Annotation Report i‘:'-.uitabilit,-‘ Report

| Elapsed time: 8,525 | | Vectorized | | Mot Vectorized | FILTER: | All Modules % | | All Sources A

Why Mo

Function Call Sites and Loops & SeleCt lOOpS Of interest Loop Type Vectorization?

= loop at fractal.cpp:179 in <lambdal>:op... gnvector .. 0,013s| 12,020 ImD Collapse Collapse
(U] [loop at fractal.cpp:179 in <lambdal>2o.. ® Senalized use.. 001351 11,281 1 | Vectorized (Body)
i+ [loop at fractal.cpp:179 in <lambdal>zo ... ‘g’ 2 Data type co... 0,000z | 0,163sl Peeled
(0 [loop at fractal.cpp:179 in <lambdal>zo ... ‘' 2 Data type co ... 0,000z | 0,576s1 Remainder
1+ [loop at fractal.cpp:177 in <lambdal=zoper.. [] % 2 Datatypeco.. 0,010z 12,030 B Scalar
<

2.2 Check Memory Access Patterns

Identify and explore complex memory
accesses for marked loops. Fix the
reported problems.

o 1=]

Command Line

Run Memory Access Patterns analysis,
just to check how memory is used in the
loop and the called function

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

4. Memory Access Patterns Analysis

Site Name Site Function

loop_site_203 runCRawlLoops
loop_site_139 runCRawLoops
loop_site_160 runCRawlLoops

Memory Access Patterns

D @ Stidew
=p2 @ o001
1 635

@p23 @ 00

Site Info Loop-Carried Dependencies Strides Distribution Access Pattern
runCRawlLoops.coc1063 € RAW:L No information available No information available
runCRawlLoops.coc622 No information available [1139%/36% / 2588 Mixed strides
runCRawloops.c0c925 No information available 100% /0% /0% All unit strides

Type Source Modules Alignment
Unit stride runCRawlLoops.coc637 | Icals.exe

j2 = (j2 & 64-1) ;

plip] [0]

plip] [1]

i2 += e[i2+32];

j2 += £[j2+32];

Unit stride runCRawloops.0oc638 Icals.exe

P30 @ -1575; -63; -26; -25; -1; 0; 1; 25; 26; 63; 2164801 Variable stride runCRawLoops.coc628 Icals.exe

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Jl &= 64-1;
plipl[2] += b[j1][i1]:

Optimization Notice

4.
't's time for explicit parallelism
choices to make your code
faster, not slower.

Example of Quter Loop Vectorization

#pragma omp declare simd

int lednam(float c)

{ // Compute n >= @ such that c*n > LIMIT
float z = 1.0f; int iters = 0;
while (z < LIMIT) {

z =z * c; iters++;

float in_vals[];
#pragma omp simd

for(int x = @0; x < Width; ++x) {
count[x] = lednam(in_vals[x]);

z=z%*cC z=z*C z=z%*cC z=z*C

/
/
/
/

N
1
N
*
(@)
N
I
N
*
(@]
N
|
N
(@)
N
I
N
*
@)

iters = 2 iters = 23 iters = 255 iters = 37

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Vectorization yesterday

DO1k=1,n
1 A(k) = B(k) + C(k)

K=1 K=2 K=1..2
m D LdC(1) LdC(2)

Lm Ld B(1) Ld B(2)

Add Add Add Add

St A(1) St A(2) StA(1) StA(2)

Scalar code Vector code

Vector code generation was straightforward

Emphasis on analysis and disambiguation

Optimization Notice

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Vectorization today

#pragma omp simd reduction(+:....)
for(p=0; p<N; p++) {

// Blue work

if(...) {

p=0..1

©
1
-

}else {
// Red work

} Are all
lanes done?

while(...) {

/[Purple work

}
y = foo (x);
Pink work

}

Function call Function call

Two fundamental problems

Data divergence
Control divergence

Vector code generation has become a more difficult problem
Increasing need for user guided explicit vectorization
Explicit vectorization maps threaded execution to simd hardware

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Time for parallelism choices:

Where to introduce parallelism and how?

for(int 1=0; i1i<Xmax; 1++) < Here?
for(int J=0; J<Ymax; j++)
for (int k=0; k<Zmax; k++) { <€ Here????
//do some work
for (int 1=0; 1<gdim; 1++) { < Here???
for (int m=1l; m<=half; m++) { ¢ Here??
/...

fSwapPairM (...);

No performance without “explicit parallelism” choices
(no performance “by default”)
No good choices without knowing “the DATA”

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

4. Memory Access Patterns Analysis

Site Name Site Function

loop_site_203 runCRawlLoops
loop_site_139 runCRawLoops
loop_site_160 runCRawlLoops

Memory Access Patterns

D @ Stidew
=p2 @ o001
1 635

@p23 @ 00

Site Info Loop-Carried Dependencies Strides Distribution Access Pattern
runCRawlLoops.coc1063 € RAW:L No information available No information available
runCRawlLoops.coc622 No information available [1139%/36% / 2588 Mixed strides
runCRawloops.c0c925 No information available 100% /0% /0% All unit strides

Type Source Modules Alignment
Unit stride runCRawlLoops.coc637 | Icals.exe

j2 = (j2 & 64-1) ;

plip] [0]

plip] [1]

i2 += e[i2+32];

j2 += £[j2+32];

Unit stride runCRawloops.0oc638 Icals.exe

P30 @ -1575; -63; -26; -25; -1; 0; 1; 25; 26; 63; 2164801 Variable stride runCRawLoops.coc628 Icals.exe

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Jl &= 64-1;
plipl[2] += b[j1][i1]:

Optimization Notice

Time for parallelism choices:

Advisor MAP to make informed optimal
decision!

for(int 1=0; 1<Xmax; i++)
for (int j=0; j<Ymax; J++)
for (int k=0; k<Zmax; k++) {
//do some work

for (int 1=0; 1l<qgdim; 1++) { | €

Strides Distribution

for (int m=1l; m<=half; m++) { \\/' Strides Distribution
// ... ¢ AN

fSwapPairM (...);

}

Memory Access Patterns analysis (+ also Trip Counts)
to drive decision
wrt most appropriate parallelism level

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Optimization Notice

2. Guidance: detect problem and
recommend how to fix it

& VA |ssue: Peeled/Remainder loop(s) present

@ All or some source loop iterations are not executing in the kernel loop. Improve performance by moving
Y 8 source loop iterations from peeled/remainder loops to the kernel loop. Read more at Vector Essentials,

Utilizing Full Vectors...

Recommendation: Align memory access

Projected maximum performance gain: High

Projection confidence: Medium

The compiler created a peeled loop because one of the memory accesses in the source loop does not
start at a data boundary. Align the memory access and tell the compiler your memory access is aligned.

This example aligns memory using a 32-byte boundary:

float *array;
array = (float *)_mm_malloc(ARRAY_SIZE*sizeof(float), 32);

// Somewhere else
__assume_aligned(array, 32);
// Use array in loop

r names and brands may be claimed as the property of others. Optimization Notice

Copyright © 2015 Intel Corporation. All rights reserved. *O

Background on loop vectorization

A typical vectorized loop consists of This is where we want our
_ loops to be executing!
Main vector body

* Fastest among the three!

Optional peel part

» Used for the unaligned references in your loop. Uses Scalar or slower vector
Remainder part

* Due to the number of iterations (trip count) not being divisible by vector
length. Uses Scalar or slower vector.

Larger vector register means more iterations in peel/remainder
* Make sure you Align your data!

« Make the number of iterations divisible by the vector length!

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Get Specific Advice For Improving Vectorization

Intel® Advisor XE — Vectorization Advisor

% Where should | add vectorization and/or threading parallelism? Intel Advisor XE 20716

Summary MSUNE}(B0 ® Refinement Reports & Annotation Report | Suitability Report

| Elapsed time: 8,81s | | Vectorized | | Mot Vectorized | I:I FILTER: | All Modules v | | All Sources hd =

Vectorized Loops &
& | @ VectorIssues

e Click to see recommendation

Function Call 5ites and Loops Self Timew

Total Time Loop Type | Why Mo Vectorization?

‘u‘ectu:u...| Estim... | Vector Len

11,460 @R Scalar

0 [loop at arena.cpp:28 in thbatbhbe:]] 0,000 11,460 @ Scalar
= [loop at fractal.cpp:179 in <lambda1>zop ... ® 5 Ineffective ...| 0,000s| 202250 Collapse Collapse
i+ [loop at fractal.cpp:179 in <lambdal>smo .. [| '@ 2Datatypeco.. 0,000s 202250 Rernainder
W
< >
‘¢ Recommendations | &
& el Issue: Ineffective peeled/remainder loop(s) present
All or some source loop iterations are not executing in the loop body. Improve performance by moving source loop iterations from
@ 5 peeled/remainder loops to the loop body.
(> Disable unrolling i i
The trip count after loop unrolling is too small compared to AdV|Sor XE ShOWS h|nts t0O move nroll
factor using a directive. . .
ICL/ICC/ICPC Directive | IFGRT Directive iterations to vector body.
#pragma nounroll IDIRS NOUNROLL
#pragma unroll IDIRS UNROLL
Read More:
s User and Reference Guide for the Intel C++ Compiler 15.0 > Compiler Reference > Pragmas > Intel-specific Pragma
Reference > unroll/nounroll. v

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Don’t Just Vectorize, Vectorize Efficiently

See detailed times for each part of your loops. Is it worth more effort?

4| Where should | add vectorization and/or threading parallelism?

Summary % SILESE L P Refinement Reports & Annotation Report | Suita bility Report

| Elapsed tirne: 8,525 | | Vectorized | | Mot Vectorized | FILTER: | All Modules ¥ | All Sources h
Function Call Sites and Loops d | @ Vector Issues Self Timew Total Time Loop Type Why No
WVectorization?
=Y [loop at fractal.cpp:179 in <lambdal=>:op... ‘¢’ 4 High vector ... 0,013s| 12,020s B Collapse Collapse
[1] [loop at fractal.cpp:179 in <lambdal=:o.. ® Serialized use.. 00131 11,2815 1 |Vectorized (Body)

i+ [loop at fractal.cpp:179 in <lambdal=zo... ‘g’ 2 Data type co... 0,000=1 0,163s1 Peeled

0 [loop at fractal.cpp:179 in <lambdals>zo .. ‘g 2 Datatypeco.. 0,000s 0,576s) Rernainder
1+ [loop at fractal.cpp:177 in <lambdal=zoper.. [] % 2 Datatypeco.. 0.010s1 12,030 B Scalar

£

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Vectorization Advisor: use cases

DL-MESO : major CFD package for cross-UK industrial consortium : new chemical
products development (led by STFC Hartree/Daresbury)

DL-MESO optimization use case

70

60

50

40

30

20

Workload time

10

0

OpenMP4.0 explicit
Baseline Intel Compiler -0O2 -xAVX vectorizaiton with Vector
Advisor

Code modernization
potential

Optimization Notice

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Vectorization Advisor: use cases

DL-MESO : major CFD package for cross-UK industrial consortium : new chemical
products development (led by STFC Hartree/Daresbury)

Per=Worikload

Just scalar=> AVX
AVX2,; AVXST12 = nNexXt steps

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Intel® Parallel Studio XE 2016 Beta
What's New

Launching August 2015

Intel® Parallel Studio XE 2016 Suites

Vectorization — Boost Performance By Utilizing Vector Instructions /
Units

» [ntel® Advisor XE - Vectorization Advisor identifies new vectorization
opportunities as well as improvements to existing vectorization and highlights
them in your code. It makes actionable coding recommendations to boost
performance and estimates the speedup.

Scalable MPI Analysis- Fast & Lightweight Analysis for 32K+ Ranks

» |ntel® Trace Analyzer and Collector add MPI Performance Snapshot feature
for easy to use, scalable MPI statistics collection and analysis of large MPI jobs
to identify areas for improvement

Big Data Analytics — Easily Build IA Optimized Data Analytics
Application

= |ntel® Data Analytics Acceleration Library (Intel® DAAL) will help data
scientists speed through big data challenges with optimized IA functions

Standards - Scaling Development Efforts Forward

= Supporting the evolution of industry standards of OpenMP*, MPI, Fortran and
C++ Intel® Compilers & performance libraries

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® Advisor XE — New! Vectorization Advisor

Data Driven Vectorization Design TO REWORK

"/ Where should | add vectorization andfor threading parallelism? 1 Intel Advisor XE 2016

H ave you: E\a:SA‘MsWEVE:tu:zed Mot Vectorized . FILTER: | All Modules ¥ All Sources
= Recompiled with AVX2, but seen little s

0 {loop st st_algo h4740in stetr ... [] 017051 0:170s1 Sealar B non-vectorizable loop ins...

.
b e n e f I t7 EI0 [loop st loopstl.cpp:2449in 5234_] 9 2 neffective peeled/rem., 017051 017051 124 Collapse Collapse
" b 015051 0150s1 12 Vectorized (Body)

[laap ot loopstl.cpp:dddins.. []

@ector lssues Laop Type Why Mo Vectorization?

Self Time v ‘Tm\ Tm‘l"”
ounts

= W d d h d d . 2O [loop at loopstlepp:2ins.. [0000s1 00201 4 Rernainder
t t t 0 [loop ot loopstlcpp 700 invas][] 017051 070 500 5 B vectorizat ble but 4
On ere . W e re O S ar a Ing [|::§:«|::E2t|.Zi::1su;?nv:;... ¥ 1 High vector register .. 0.160:\ 0.1602\ 12 E;nL prmm F ax [s
[loop at loopstlcpp 38 ins278] @ 2 Ineffective peeledrern, 015051 01501 154 Expand Bxpand L]
Ve CtO r ZatIO n? [loop atloopstlcppi6249in s414] 005l 0TS0l 2 Eaend Bgand X 4
. . R 0 [loop ot st_numerichidd7instd. (] @ 18ssumed dependency.. 015051 0150:1 43 Stalar @ vector dependence preve .. v
» Recoded intrinsics for each new I)
. ? Source y B
architecture?
Lme| Source |Tata\T\me‘ % ‘LoapT\me| % "‘

= Struggled with cryptic compiler vt

vectorization messages? e

Scalar Loop. Mot vectorized: imer loop vas already vectorized
Ho loop transforwations were applied

[loop at loopstl.cpp:3509 in 8273_)

Breakthrough for vectorization design |msimms
= What vectorization will pay off the most? S :
= Whatis blocking vectorization and why?

= Are my loops vector friendly?

= Will reorganizing data increase
performance?

» |s it safe to just use pragma simd?

More Performance
Fewer Machine Dependencies

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® Advisor XE — Vectorization Advisor

Provides the data you need for high impact vectorization

Compiler diagnostics + Performance Data = All the data you need in one place
* Find “hot” un-vectorized or “under vectorized” loops.

= Trip counts

Recommendations — How do | fix it?

Correctness via dependency analysis

» |s it safe to vectorize?

Memory Access Patterns analysis

= Unit stride vs Non-unit stride access, Unaligned memory access, etc.

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® C/C++ and Fortran Compilers 16.0
Get best performance with latest standards

Standards:

* More of C++14, generic lambdas, member initializers and aggregates
 More of C11, Static_assert, Generic, Noreturn, and more

 OpenMP 4.0 C++ User Defined Reductions, Fortran Array Reductions
Vectorization:

* OpenMP 4.1 asynchronous offloading, simdlen, simd ordered

« Significant improvement in alignment analysis, vectorization robustness
* Much improved Neighboring Gather optimization

Fortran:

« F2008 Submodules, Impure Elemental Functions

« F2015 TYPE(*), DIMENSION(..), RANK intrinsic, attributes for args with
BIND

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® Math Kernel Library (Intel® MKL) 11.3

Better performance with new two-stage API for Sparse BLAS routines

Additional Sparse Matrix Vector Multiplication API

. new two-stage API for Sparse BLAS level 2 and 3 routines

MKL MPI wrappers

. all MPl implementations are APl-compatible but MPl implementations are not ABI-compatible

" MKL MPI wrapper solves this problem by providing an MPI-independent ABI to MKL
Support For Batched Small Matrix multiplication

. a single call executes multiple independent 7GEMM operation simultaneously

Support for Philox4x35 and ARS5 RNG
. two new pseudorandom number generators with a period of 272128 are highly optimized for multithreaded

environment

Sparse Solver SMP improvements

. significantly improved overall scalability for Intel Xeon Phi coprocessors and Intel Xeon processors

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® Data Analytics Acceleration Library 2016

A C++ and Java API library of optimized analytics building blocks for all data analysis stages, from data acquisition to

data mining and machine learning. Essential for engineering high performance Big Data applications.

New library targeting data analytics market / Data Management
Interfaces for data. representation and access. Data Processing
= Customers: analytics solution providers, system o e T T e and data Optimized analytics building blocks for all data
. d |. . d l ESI.T l. ! defined da‘ta so’urce/'forma; analysis stages, from data acquisition to data
mtegrators, ana application aeve opers(, 1elco, - mining and machine learning.
Retail, Grid, etc.)
= Key benefits: improved time-to-value, forward- \. J/
scaling performance and parallelism on IA, advanced [e][Humeric][Outliers Detection]l (-)
analytics building blocks Data Modeling
. i lioati Data structures for model representation, and
Key features [Compression /] [Serialization /] operations to derive model-based predictions and
y Decompression Deserialization conclusions.
= Building blocks highly optimized for IA to support all \ /
data analysis stages \. J
* Support batch, streaming, and distributed processing Important features offered in the initial Beta
with easy connectors to popular platforms (Hadoop,
Spark) and tools (R, Python, Matlab) Analysis Machine learning
. . . . «PCA « Linear regression
* Flexible interfaces for handling different data +Variance-Covariance Matrix . Apriori
sources (CSV, MySQL, HDFS, RDD (Spark)) «Distances « K-Means clustering
. . . «Matrix decompositions (SVD, QR, Cholesky) Naive Bayes
= Rich set of operations to handle sparse and noisy +EM for GMM « LogitBoost, BrownBoost, AdaBoost
dat «Uni-/multi-variate outlier detection « SVM
ala
«Statistical moments
= C++andJava APIs

Data layouts: AOS, SOA, homogeneous, CSR

Data sources: csv, MySQL, HDFS/RDD
Compression/decompression: ZLIB, LZO, RLE, BZIP2
Serialization/deserialization

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® VTune™ Amplifier XE 2016 Beta
Enhanced GPU and Microarchitecture Profiling

New OS and IDE support: Visual

Studio* 2015 & Windows* 10 -
Threshold - mwww-»‘aw»- ‘ ——cs
i ek G- G:DITS:!\‘ el Time | Aversge T P‘\m;’u ¢Cou N|S|MDI‘NI Adv {:uT:\ \B::d'\ i ﬂ'::mrww\n a | win [‘BWT::LILMI(

/ Computing Task (GPU) . ‘
® . A = Compute 5485 00065 w 2030 630 21977 083 079 0@
I n t el H D G ra h I CS G P U rOfI ll n | G Sample | 0438 0,002 284 16] 0826 5| 0023 0.000] 0,000
i 9635 L 0.553 MJE 11372 40545 A 9365 25‘054 040 0.975
4l AdvancePaths 65536 64 1.056s 0.004s: 284 B 0200 0667 0.043 36702 2001 0042 0473 15501 284 0071 0.005
& IntFrameduffer BUN o 0001 001 1 2 0MTOTR2 00 20457 0000 000 0000 TO47T 6102 D00 0000
Selected 1 row(s): 0435 00025 2 0826 0.145 0029 3381 0000 0000 0000 9868 2403 000 0.000
< H

= GPU Architecture Annotation

= GPU profiling on Linux (OpenCL,

(20.1%)

Media SDK) ﬂ .
Microarchitecture tuning W S

= General Exploration analysis with
confidence indication Py

= Driverless ‘perf’ EBS with stacks

System
Read: 6.60 G/
Hrite: 2.17 GB|

Optimization Notice

*Other names and brands may be claimed as the property of others.

Copyright © 2015 Intel Corporation. All rights reserved.

Intel® VTune™ Amplifier XE 2016 Beta
Improved OpenMP* and Hybrid Support

Intel OpenMP analysis
enhancements

* Advanced Hotspots

Gragorg: Qe Regon | Furcion | Cal Stack
Openh® Fotentil Gan A Opend® Potertial Govn (% of Collecten Tine) Num.

= Precise trace-based imbalance Opo e o it] e St .| o e - s - 0 5 5, £
calculation that is especially usefu |mm . -

MAIN_SempSparalet N §/home/vtune/ work/sppy/ NPB PR3 31 /N983.3-OMP/(G/cg £185:231

0% 00% 00% 0285 N

profiling of small region instances | wusm .
£ MAIN_ SompSpanaiet 40/ home/ iune work/ spp NPRNPE3 3 10983.3-0MP/(G/eg 1339348 s O 1] O 0s 0.000% 00% 00% 00N 00% 00% Q0% 00015 M »
§ MAIN_SompSparaliet 14§/ home/vtune/ work/ sppt/ NPENPB3 310083 3-OMP/C Gcg 36163 00005 0s 1] O 06 O 00N 00% o) 00% 00N 00% 0001 M

= Classification and issue highlighting
potential gains, e.g., imbalance, lock
contention, creation overhead, etc.

» Detailed analysis of barrier-to-barrier
region segments

® Advanced Hotspots

n
Goorg: Operk® Regen | Function / Cal Stadk

]

MPIl+OpenMP: multi-rank analysis ——— ot 8 tfhrttutlimlet 8 il

O n a C O m p u te n O d e 1 cony gred_SompSparaliet & Mome/ viune work/ app NP ANSELLLASELL-OMP/ G/ 4 S 493

+ MAN_Sempiparatel 248 home/\tune/work/sppu NP NP1 1 NPRL D OMP/CG/cg 138520

00% 00N 0% 00N OI% N N
WA% 00N 00N 00% 00N 00N 06 M

[Senal - outude any regen) % 0% Ol
. . # MAN_Sompliparatet 240/ ome tunework/ apps NPBNPEII L MPEII-OMP/CG/c b IS 0% O 06 0 0 0 00% 00% 0% 0% 00N 0O% OMIsN
| Per_rank OpenMP poten‘“al ga|n and # MAD_SompSparatet 260/ home/vtune/ werk, appu NORNORI)LNOU1D- OMP/CO/cg 4 268 00 o O 0 O O 0% 00N 00% 08% 00N 00% 0001 M
£ MAN_ Somplonratel 340 home'dume/work/ sppu NORNOR) 11 9))-OMD 1 cp 26360 O O O O O 0% 00% 00% 08% 00% 00% 0000 M

serial time metrics

= Per-rank Intel MPI communication busy
wait time detection

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

MPI Performance Snapshot
Scalable profiling for MPI and Hybrid

MPI Performance Snapshot Summary

Lightweight — Low overhead —
profiling for 32K+ Ranks wist

Used statistics: pes_rd_f020.txt

Overview Performance by Metric
MPITime: 14.70 sec 48.99% WallClock time: 30.00 sec
BMPI Imbalance: 14,69 sec 48.98% Total application lifetime. The time is elapsed time for the slowest precess. This metric is
. the sum of the MPI Time and the Computation time below,
mgm B Computation Time: 15.30 sec 50.98% .
Scalability- Performance e s o | W
BOpenMP Imbalance: 737 sec 24.57% Time spent inside the MPI library. High values are usually bad.

This value is HIGH. The application is Communication-bound. More details..

Vanatlon a.t Scale Can be el Time: 040 sec b B MPLImbalance: 1469 sec ek
detected sooner

a process is waiting for data. This time is part of the MPI time above. High
values are usually bad.

This value is HIGH. The application workload is NOT well balanced between
MPI ranks, More defails...

WallClock
fime: B Computation Time: 15,30 sec 50.98%
30.00 sec Mean time per-process spent in the application code. This s the sum of the

OpenMP Time and the Serial time. High values are usually good.
This value is AVERAGE. The application is Computation-bound. More details...

B 0penMP Time: 14.90 sec 49.66%
Mean time per process spent in the OpenMP parallel regions. High values

Identifying Key Metrics -
Shows PAPI counters and

. Memory Usage BOpenMP Imbalance: 7.37 sec 24.57%
M P I/O e n P 4 P I m b a l a n Ces Iiean unproductive wait time per-process spent in OpenMP parallel
Peak memory consumption (rank 1): 079 MB regions (normally at synchronization barriers). High values are usually
bad,
Mean memory consumption: 0.55M8 This value is HIGH. The application's OpenMP work sharing is NOT well
Per process memory usage affects the application load-balanced. More details...
scalability.
W Serial Time: 040 sec 132%

Mean application time per-process spent outside OpeniP parallel regions.
High values may be good or bad depending on the application algorithm.
This value is NEGLIGIBLE. This application is well parallelized via OpenMP
directives.

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Summary/Call to Action

Participate in the Beta Program today!

= Register at -
bit.ly/psxe2016beta Parallel Studio XE

= Orsimply send e-mail to
vector_advisor@intel.com

Submit Feedback via Intel® Premier
Support

Tell us about your experiences using the
Intel® Parallel Studio XE 2016 Beta

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Additional Resources

All links start with: https://software.intel.com/

Learn more about Vectorization Advisor:
https://software.intel.com/en-us/articles/vectorization-advisor-faq

https://software.intel.com/en-us/intel-advisor-xe

Vectorization Guide:
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/

Explicit Vector Programming in Fortran:
https://software.intel.com/articles/explicit-vector-programming-in-fortran

Optimization Reports:

https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-
optimization-reports

Beta Registration & Download:

https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta

For Intel® Xeon Phi™ coprocessors, but also applicable:
https://software.intel.com/en-us/articles/vectorization-essential
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

https://software.intel.com/en-us/articles/vectorization-advisor-faq
https://software.intel.com/en-us/articles/vectorization-advisor-faq
https://software.intel.com/en-us/articles/vectorization-advisor-faq
https://software.intel.com/en-us/articles/vectorization-advisor-faq
https://software.intel.com/en-us/articles/vectorization-advisor-faq
https://software.intel.com/en-us/articles/vectorization-advisor-faq
https://software.intel.com/en-us/articles/vectorization-advisor-faq
https://software.intel.com/en-us/articles/vectorization-advisor-faq
https://software.intel.com/en-us/articles/vectorization-advisor-faq
https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
https://software.intel.com/articles/explicit-vector-programming-in-fortran
https://software.intel.com/articles/explicit-vector-programming-in-fortran
https://software.intel.com/articles/explicit-vector-programming-in-fortran
https://software.intel.com/articles/explicit-vector-programming-in-fortran
https://software.intel.com/articles/explicit-vector-programming-in-fortran
https://software.intel.com/articles/explicit-vector-programming-in-fortran
https://software.intel.com/articles/explicit-vector-programming-in-fortran
https://software.intel.com/articles/explicit-vector-programming-in-fortran
https://software.intel.com/articles/explicit-vector-programming-in-fortran
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/vectorization-essential
https://software.intel.com/en-us/articles/vectorization-essential
https://software.intel.com/en-us/articles/vectorization-essential
https://software.intel.com/en-us/articles/vectorization-essential
https://software.intel.com/en-us/articles/vectorization-essential
https://software.intel.com/en-us/articles/vectorization-essential
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization

Recap

@ Scalar
__ Processing

Vector
Processing

VL

AVX: Adding

2 vectors (SP)

4.4 1.1 3.1 -85 -13 1.7 7.5 5.6

-0.3 -0.5 0.5 0 0.1 0.8 0.9 0.7

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2015y, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the
Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’'s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding

the specific instruction sets covered by this notice.
Notice revision #20110804

15 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

