
HPC codes modernization using vector
and threading parallelism – part 2 (tools)

Zakhar A. Matveev, PhD,

Intel Russia, Intel Software and Services Group

May‘ 2015

Code modernization:
Intel® Parallel Studio XE 2016 Beta

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Vectorizing Compiler
Squeeze all the performance out of the latest instruction set

Threaded Performance Libraries
Pre-vectorized, pre-threaded, pre-optimized

Vectorization Optimization and Thread Prototyping
Data driven design tools help you vectorize & thread effectively

High Level Parallel Models
Productive solutions for thread, process & vector parallelism

Parallel Performance Profilers
Quickly discover bottlenecks and tune for high performance

Threading Inspector
Find and debug non-deterministic threading errors

Intel® Parallel Studio XE
Faster code faster!

3

Download Today

Google:

“Intel Parallel
Studio 2016”

Or go directly to:
https:
//software.intel.com
/en-us/articles/
intel-parallel-studio-
xe-2016-beta

https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® Parallel Studio XE 2016 Suites

Vectorization – Boost Performance By Utilizing Vector Instructions /
Units

 Intel® Advisor XE - Vectorization Advisor identifies new vectorization
opportunities as well as improvements to existing vectorization and highlights
them in your code. It makes actionable coding recommendations to boost
performance and estimates the speedup.

Scalable MPI Analysis– Fast & Lightweight Analysis for 32K+ Ranks

 Intel® Trace Analyzer and Collector add MPI Performance Snapshot feature
for easy to use, scalable MPI statistics collection and analysis of large MPI jobs
to identify areas for improvement

Big Data Analytics – Easily Build IA Optimized Data Analytics
Application

 Intel® Data Analytics Acceleration Library (Intel® DAAL) will help data
scientists speed through big data challenges with optimized IA functions

Standards – Scaling Development Efforts Forward

 Supporting the evolution of industry standards of OpenMP*, MPI, Fortran and
C++ Intel® Compilers & performance libraries

Launching August 2015

4

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

5

Free Intel® Software Development Tools:

https://software.intel.com/en-us/qualify-for-free-software

https://software.intel.com/en-us/qualify-for-free-software
https://software.intel.com/en-us/qualify-for-free-software
https://software.intel.com/en-us/qualify-for-free-software
https://software.intel.com/en-us/qualify-for-free-software
https://software.intel.com/en-us/qualify-for-free-software
https://software.intel.com/en-us/qualify-for-free-software
https://software.intel.com/en-us/qualify-for-free-software
https://software.intel.com/en-us/qualify-for-free-software
https://software.intel.com/en-us/qualify-for-free-software
https://software.intel.com/en-us/qualify-for-free-software
https://software.intel.com/en-us/qualify-for-free-software
https://software.intel.com/en-us/qualify-for-free-software
https://software.intel.com/en-us/qualify-for-free-software
https://software.intel.com/en-us/qualify-for-free-software
https://software.intel.com/en-us/qualify-for-free-software

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Beta 2016 program : Call to Action

6

Participate in the Beta Program today!

 Register at
bit.ly/psxe2016beta

 Or simply send e-mail to
vector_advisor@intel.com

Submit Feedback via Intel® Premier
Support

Tell us about your experiences using the
Intel® Parallel Studio XE 2016 Beta

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® Advisor XE

Vectorization Optimization and Thread
Prototyping

7

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Have you:

 Recompiled with AVX2, but seen little benefit?

 Wondered where to start adding vectorization?

 Recoded intrinsics for each new architecture?

 Struggled with cryptic compiler vectorization messages?

Breakthrough for vectorization design

 What is blocking vectorization and why?

 Are my loops vector friendly?

 Will reorganizing data increase performance?

 Is it safe to just use pragma simd?

8

Data Driven Code Modernization and Optimization

For Vector and Threading Parallelism
Intel® Advisor XE – Vectorization Advisor

In Beta
Sign-up!

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

9

Vectorization challenges
LLNL (Hornung, Keasler, 2013):

”Typical codes get less than 5% of their FP instructions SIMD-ized… multi-
physics codes - have thousands of small loops, which are all important”

Efficient vectorization is sometimes challenging:

• “Poor” baselines : solid gap

• “Ninja gap” as well

• Industry code complexities

• Vector productivity problem: “thousands of loops”

• Need to know both static and dynamic code characteristics

• Some codes: demand for expensive data layout
reorganization

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

1. “All the data you need in one place”.

Leverages Intel Compiler diagnostics, performance data and ISA
statistics.

 2. Detects “hot” un-vectorized or “under vectorized” loops. Identifies
what is blocking efficient vectorization and why

3. Identify performance penalties and recommends fixes for them
(including OpenMP4.x)

4. Memory layout analysis: explore alternative data reorganizations

5. Increase the confidence that vectorization is safe

10

“Vectorization Advisor”

Beta program : started April’15.
Release: end of August ‘15.

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

11

Vectorization Advisor.
Assist code modernization for x86 SIMD

5. Memory Access Patterns Analysis

2. Guidance: detect problem and
recommend how to fix it

1. Compiler diagnostics + Performance
Data + SIMD efficiency information

4. Loop-Carried Dependency Analysis

3. “Accurate” Trip Counts: understand
parallelism granularity and overheads

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Have you:

 Tried threading an app, but seen little
performance benefit?

 Hit a “scalability barrier”? Performance
gains level off as you add cores?

 Delayed a release that adds threading
because of synchronization errors?

Breakthrough for threading design:

 Quickly prototype multiple options

 Project scaling on larger systems

 Find synchronization errors before
implementing threading

 Separate design and implementation -
Design without disrupting development

12

Data-Driven Threading Design
Intel® Advisor XE – Thread Prototyping

http://intel.ly/advisor-xe

Add Parallelism with Less Effort,
Less Risk and More Impact

http://intel.ly/advisor-xe
http://intel.ly/advisor-xe
http://intel.ly/advisor-xe

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Vectorization Advisor in action

Live Case Study with “DL-MESO”

13

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

14

DL-MESO

Computational fluid dynamics engine
• New mesoscopic simulation engine
• Applicable for problems such as inkjet printing and

steel production
• Lattice Boltzman Equation

Developed by EPSRC CPP5
• including Hartree, Oxford, Imperial College
• Michael Seaton at Hartree as major contributor

Workload characteristics:
- “Flat profile”, many small kernels
- Profiles are very diverse depending on input datasets

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

0.
Workflow

15

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Build App in
Release Mode

Investigate
Loop(s)

Improve App
Performance

Run Trip Count
Analysis

Run Survey
Analysis

(Re-) compile just with “-g”

Intel Compiler 15.x, 16.x (recommended)

GCC, MS CL, older Intel Compiler also supported

Configure
Project

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Build App in
Release Mode

Investigate
Loop(s)

Improve App
Performance

Run Correctness
Analysis

Run MAP
Analysis

Mark for Deeper
Analysis

Run Trip Count
Analysis

Run Survey
Analysis

(Re-) compile just with “-g”

Intel Compiler 15.x, 16.x (recommended)

GCC, MS CL, older Intel Compiler also supported

Configure
Project

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

1.
The Right Data At Your

Fingertips

18

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

19

1. Compiler diagnostics + Performance
Data + SIMD efficiency information

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Hot Loops: optimize one by one

20

Will only work through first
2 loops with max impact

Both loops were not
auto-vectorized

Relatively “flat” profile

Quickly focus on loops which really matter

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

The Right Data At Your Fingertips
Get all the data you need for high impact vectorization

21

Focus on
hot loops

What
vectorization

issues do I
have?

How efficient
is the code?

What prevents
vectorization?

Which Vector
instructions are

being used?

Trip Counts Am I
vector?

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

22

Assist user at different LoD and perspectives
END-USER GUIDANCE

ANALYSIS on WORKLOAD (high-level),…

and ASSEMBLY (low-level).
SOURCE, ..

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

2.
Is it safe to vectorize:

Tough problem #1 for not yet
vectorized codes.

23

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

24

2. Guidance: detect problem and
recommend how to fix it

1. Compiler diagnostics + Performance
Data + SIMD efficiency information

4. Loop-Carried Dependency Analysis

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Data Dependencies – Tough Problem #1
Is it safe to force the compiler to vectorize?

Data dependencies

 for (i=0;i<N;i++) // Loop carried dependencies!

 A[i] = A[i-1]*С[i];// Need the ability to check if it

 // it is safe to force the compiler

 // the compiler to vectorize!

25

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Data Dependencies – Tough Problem #1
Dynamic check will *know* if indices overlap.

1) fSwapPairM (lbf[il*lbsitelength + l*lbsy.nq + m + half],
 lbf[ilnext*lbsitelength + l*lbsy.nq + m]);

2) fSwapPairM (lbf[il*lbsitelength + l*lbsy.nq + m + half],
 lbf[ilnext*lbsitelength + l*lbsy.nq + m]);

26

Both loops “equally bad” :
from static analysis/compilation “best knowledge”

Compiler Assumption:

Compiler Assumption:

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Data Dependencies – Tough Problem #1
Dynamic check *knows* if memory accesses really overlap.

27

Correctness Analysis: confirm dependencies are REAL

1) fSwapPairM (lbf[il*lbsitelength + l*lbsy.nq + m + half],
 lbf[ilnext*lbsitelength + l*lbsy.nq + m]);

2) fSwapPairM (lbf[il*lbsitelength + l*lbsy.nq + m + half],
 lbf[ilnext*lbsitelength + l*lbsy.nq + m]);

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

2.
Any speed-up out of there?

Use SIMD to make your code
faster, instead of slower.

28

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

29

1. Compiler diagnostics + Performance
Data + SIMD efficiency information

3. “Accurate” Trip Counts: understand

parallelism granularity and overheads

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Vector Efficiency: my performance thermometer
all the data in one place

30

Survey: find out if your code is “undervectorized” and why

Achieved
Efficiency

Original (scalar)
code efficiency.
Corresponds
to 1x speed-up.

Upper bound:
100% efficiency
4x gain
 (VL=4)

• Auto-vectorization: affected <3% of code
• With moderate speed-ups

• First attempt to simply put #pragma simd:

• Introduced slow-down

• Look at Vector Issues and Traits to find out
why

• All kinds of “memory manipulations”
• Usually an indication of “bad” access

pattern

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

3.
Tough problem #1 for already

vectorized codes

31

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

 Unit-Stride access to arrays

 for (i=0;i<N;i++)

 A[i] = C[i]*D[i]; //Accessing array elements 1 by 1

 Non-unit-stride (constant stride) access to arrays

 for (i=0;i<N;i+=2)

 A[i] = C[i]*D[i]; //Incrementing “i” by 2: not unit stride

 //Often indication of demand for AoS ->

 // SoA conversion

 Indirect reference in a loop

 for (i=0;i<N;i++)

 A[B[i]] = C[i]*D[i];//We have to decode B[i] to find out

 //which element of A to reference

32

Non-Contiguous Memory – Tough Problem #2
Potential to vectorize but may be inefficient

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Object-oriented programming

33

Class Point {float
x,y,z;}
Class Triangle {Point
a,b,c;}
Triangle T[100];

x y z x y z x y z

 a b c

x y z x y z x y z

 a b c

 T[0] T[1]

void ComputeNormals(Point normal[__restrict], const
Triangle p[], size_t n)
 for(size_t i=0; i<n; ++i)
 normal[i] = Cross(p[i].b-p[i].a, p[i].c-p[i].a);
}

Point Cross(const Point& a, const Point& b) {
 return Point(a.y*b.z-a.z*b.y, a.z*b.x-a.x*b.z,
a.x*a.y-a.y-b.x);
}

Object oriented programming may inhibit SIMD
code generation

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Run Memory Access Patterns analysis,
just to check how memory is used in the
loop and the called function

Select loops of interest

Improve Vectorization
Memory Access pattern analysis

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

35

2. Guidance: detect problem and
recommend how to fix it

1. Compiler diagnostics + Performance
Data + SIMD efficiency information

3. Loop-Carried Dependency Analysis 4. Memory Access Patterns Analysis

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

4.
It’s time for explicit parallelism

choices to make your code
faster, not slower.

36

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Example of Outer Loop Vectorization
#pragma omp declare simd
int lednam(float c)
{ // Compute n >= 0 such that c^n > LIMIT
 float z = 1.0f; int iters = 0;
 while (z < LIMIT) {
 z = z * c; iters++;
 }
 return iters;
}

float in_vals[];
#pragma omp simd
for(int x = 0; x < Width; ++x) {
 count[x] = lednam(in_vals[x]);
}

37

x = 0 x = 1 x = 2 x = 3

float in_vals[];
#pragma omp parallel for simd
for(int x = 0; x < Width; ++x) {
 count[x] = lednam(in_vals[x]);
}

float in_vals[];
#pragma omp simd
for(int x = 0; x < Width; ++x) {
 count[x] = lednam(in_vals[x]);
}

z = z * c

z = z * c

iters = 2

z = z * c

z = z * c

….

iters = 23

z = z * c

z = z * c

……….……...

iters = 255

z = z * c

z = z * c

……..

iters = 37

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

 DO 1 k = 1,n
 1 A(k) = B(k) + C(k)

Vector code generation was straightforward
Emphasis on analysis and disambiguation

Vectorization yesterday

38

K=1

Ld C(1)

Ld B(1)

Add

St A(1)

K=2

Ld C(2)

Ld B(2)

Add

St A(2)

K=1..2

Ld C(1)

Ld B(1)

Add

St A(1)

Ld C(2)

Ld B(2)

Add

St A(2)

Scalar code
Vector code

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Vectorization today

Vector code generation has become a more difficult problem
Increasing need for user guided explicit vectorization

Explicit vectorization maps threaded execution to simd hardware

Two fundamental problems
 Data divergence
 Control divergence

p=0

39

2

Are all
lanes done?

p=0..1

Function call

x1

y1

Vector Function call

x1, x2

y1, y2

#pragma omp simd reduction(+:….)

for(p=0; p<N; p++) {
 // Blue work
 if(…) {
 // Green work
 } else {
 // Red work
 }
 while(…) {
 // Gold work
 // Purple work
 }
 y = foo (x);
 Pink work
}

p=1

3

Function call

x2

y2

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

40

Time for parallelism choices:
Where to introduce parallelism and how?

for(int i=0; i<Xmax; i++)

 for(int j=0; j<Ymax; j++)

 for(int k=0; k<Zmax; k++) {

 //do some work

 for (int l=0; l<qdim; l++) {

 for (int m=1; m<=half; m++) {

 //...

 fSwapPairM (...);

 }

 }

 }

 }

}

Here?

Here????

Here???

Here??

No performance without “explicit parallelism” choices
(no performance “by default”)

No good choices without knowing “the DATA”

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

41

2. Guidance: detect problem and
recommend how to fix it

1. Compiler diagnostics + Performance
Data + SIMD efficiency information

3. Loop-Carried Dependency Analysis 4. Memory Access Patterns Analysis

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

42

Time for parallelism choices:
Advisor MAP to make informed optimal
decision!
for(int i=0; i<Xmax; i++)

 for(int j=0; j<Ymax; j++)

 for(int k=0; k<Zmax; k++) {

 //do some work

 for (int l=0; l<qdim; l++) {

 for (int m=1; m<=half; m++) {

 //...

 fSwapPairM (...);

 }

 }

 }

 }

}
Memory Access Patterns analysis (+ also Trip Counts)

to drive decision
wrt most appropriate parallelism level

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

43

2. Guidance: detect problem and
recommend how to fix it

1. Compiler diagnostics + Performance
Data + SIMD efficiency information

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Background on loop vectorization

44

A typical vectorized loop consists of

Main vector body

• Fastest among the three!

Optional peel part

• Used for the unaligned references in your loop. Uses Scalar or slower vector

Remainder part

• Due to the number of iterations (trip count) not being divisible by vector
length. Uses Scalar or slower vector.

Larger vector register means more iterations in peel/remainder

• Make sure you Align your data!

• Make the number of iterations divisible by the vector length!

This is where we want our
loops to be executing!

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Click to see recommendation

Advisor XE shows hints to move
iterations to vector body.

Get Specific Advice For Improving Vectorization
Intel® Advisor XE – Vectorization Advisor

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

46

Don’t Just Vectorize, Vectorize Efficiently
See detailed times for each part of your loops. Is it worth more effort?

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

47

Vectorization Advisor: use cases

DL-MESO : major CFD package for cross-UK industrial consortium : new chemical
products development (led by STFC Hartree/Daresbury)

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

48

Vectorization Advisor: use cases

DL-MESO : major CFD package for cross-UK industrial consortium : new chemical
products development (led by STFC Hartree/Daresbury)

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® Parallel Studio XE 2016 Beta
What’s New

49

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® Parallel Studio XE 2016 Suites

Vectorization – Boost Performance By Utilizing Vector Instructions /
Units

 Intel® Advisor XE - Vectorization Advisor identifies new vectorization
opportunities as well as improvements to existing vectorization and highlights
them in your code. It makes actionable coding recommendations to boost
performance and estimates the speedup.

Scalable MPI Analysis– Fast & Lightweight Analysis for 32K+ Ranks

 Intel® Trace Analyzer and Collector add MPI Performance Snapshot feature
for easy to use, scalable MPI statistics collection and analysis of large MPI jobs
to identify areas for improvement

Big Data Analytics – Easily Build IA Optimized Data Analytics
Application

 Intel® Data Analytics Acceleration Library (Intel® DAAL) will help data
scientists speed through big data challenges with optimized IA functions

Standards – Scaling Development Efforts Forward

 Supporting the evolution of industry standards of OpenMP*, MPI, Fortran and
C++ Intel® Compilers & performance libraries

Launching August 2015

50

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

51

Intel® Advisor XE – New! Vectorization Advisor
Data Driven Vectorization Design TO REWORK

Have you:
 Recompiled with AVX2, but seen little

benefit?

 Wondered where to start adding
vectorization?

 Recoded intrinsics for each new
architecture?

 Struggled with cryptic compiler
vectorization messages?

Breakthrough for vectorization design
 What vectorization will pay off the most?

 What is blocking vectorization and why?

 Are my loops vector friendly?

 Will reorganizing data increase
performance?

 Is it safe to just use pragma simd?

More Performance
Fewer Machine Dependencies

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

52

Intel® Advisor XE – Vectorization Advisor
Provides the data you need for high impact vectorization

Compiler diagnostics + Performance Data = All the data you need in one place

 Find “hot” un-vectorized or “under vectorized” loops.

 Trip counts

Recommendations – How do I fix it?

Correctness via dependency analysis

 Is it safe to vectorize?

Memory Access Patterns analysis

 Unit stride vs Non-unit stride access, Unaligned memory access, etc.

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® C/C++ and Fortran Compilers 16.0
Get best performance with latest standards

53

Standards:

• More of C++14, generic lambdas, member initializers and aggregates

• More of C11, _Static_assert, _Generic, _Noreturn, and more

• OpenMP 4.0 C++ User Defined Reductions, Fortran Array Reductions

Vectorization:

• OpenMP 4.1 asynchronous offloading, simdlen, simd ordered

• Significant improvement in alignment analysis, vectorization robustness

• Much improved Neighboring Gather optimization

Fortran:

• F2008 Submodules, Impure Elemental Functions

• F2015 TYPE(*), DIMENSION(..), RANK intrinsic, attributes for args with

BIND

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Additional Sparse Matrix Vector Multiplication API

 new two-stage API for Sparse BLAS level 2 and 3 routines

MKL MPI wrappers

 all MPI implementations are API-compatible but MPI implementations are not ABI-compatible

 MKL MPI wrapper solves this problem by providing an MPI-independent ABI to MKL

Support For Batched Small Matrix multiplication

 a single call executes multiple independent ?GEMM operation simultaneously

Support for Philox4x35 and ARS5 RNG

 two new pseudorandom number generators with a period of 2^128 are highly optimized for multithreaded

environment

Sparse Solver SMP improvements

 significantly improved overall scalability for Intel Xeon Phi coprocessors and Intel Xeon processors

54

Intel® Math Kernel Library (Intel® MKL) 11.3
Better performance with new two-stage API for Sparse BLAS routines

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

New library targeting data analytics market

 Customers: analytics solution providers, system
integrators, and application developers (FSI, Telco,
Retail, Grid, etc.)

 Key benefits: improved time-to-value, forward-
scaling performance and parallelism on IA, advanced
analytics building blocks

Key features

 Building blocks highly optimized for IA to support all
data analysis stages

 Support batch, streaming, and distributed processing
with easy connectors to popular platforms (Hadoop,
Spark) and tools (R, Python, Matlab)

 Flexible interfaces for handling different data
sources (CSV, MySQL, HDFS, RDD (Spark))

 Rich set of operations to handle sparse and noisy
data

 C++ and Java APIs

6 releases of Tech Preview
in 2014.

First Beta in Feb’15. First
gold release in Aug’15.

Analysis

•PCA
•Variance-Covariance Matrix

•Distances

•Matrix decompositions (SVD, QR, Cholesky)

•EM for GMM
•Uni-/multi-variate outlier detection

•Statistical moments

Machine learning

• Linear regression
• Apriori

• K-Means clustering

• Naïve Bayes

• LogitBoost, BrownBoost, AdaBoost
• SVM

A C++ and Java API library of optimized analytics building blocks for all data analysis stages, from data acquisition to
data mining and machine learning. Essential for engineering high performance Big Data applications.

Important features offered in the initial Beta

• Data layouts: AOS, SOA, homogeneous, CSR
• Data sources: csv, MySQL, HDFS/RDD
• Compression/decompression: ZLIB, LZO, RLE, BZIP2
• Serialization/deserialization

Data Processing

Optimized analytics building blocks for all data
analysis stages, from data acquisition to data

mining and machine learning.

Data Modeling

Data structures for model representation, and
operations to derive model-based predictions and

conclusions.

Data Management

Interfaces for data representation and access.
Connectors to a variety of data sources and data
formats, such HDFS, SQL, CSV, ARFF, and user-

defined data source/format.

Data
Sources

Numeric
Tables

Outliers Detection

Compression /
Decompression

Serialization /
Deserialization

Intel® Data Analytics Acceleration Library 2016

55

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® VTune™ Amplifier XE 2016 Beta
Enhanced GPU and Microarchitecture Profiling

56

New OS and IDE support: Visual
Studio* 2015 & Windows* 10
Threshold

Intel® HD Graphics (GPU) profiling

 GPU Architecture Annotation
Diagram

 GPU profiling on Linux (OpenCL,
Media SDK)

Microarchitecture tuning

 General Exploration analysis with
confidence indication

 Driverless ‘perf’ EBS with stacks

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® VTune™ Amplifier XE 2016 Beta
Improved OpenMP* and Hybrid Support

57

Intel OpenMP analysis
enhancements

 Precise trace-based imbalance
calculation that is especially useful for
profiling of small region instances

 Classification and issue highlighting of
potential gains, e.g., imbalance, lock
contention, creation overhead, etc.

 Detailed analysis of barrier-to-barrier
region segments

MPI+OpenMP: multi-rank analysis
on a compute node

 Per-rank OpenMP potential gain and
serial time metrics

 Per-rank Intel MPI communication busy
wait time detection

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Lightweight – Low overhead
profiling for 32K+ Ranks

Scalability- Performance
variation at scale can be
detected sooner

Identifying Key Metrics –
Shows PAPI counters and
MPI/OpenMP imbalances

58

MPI Performance Snapshot
Scalable profiling for MPI and Hybrid

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Summary/Call to Action

59

Participate in the Beta Program today!

 Register at
bit.ly/psxe2016beta

 Or simply send e-mail to
vector_advisor@intel.com

Submit Feedback via Intel® Premier
Support

Tell us about your experiences using the
Intel® Parallel Studio XE 2016 Beta

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Learn more about Vectorization Advisor:

https://software.intel.com/en-us/articles/vectorization-advisor-faq

https://software.intel.com/en-us/intel-advisor-xe

Vectorization Guide:

https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/

Explicit Vector Programming in Fortran:
https://software.intel.com/articles/explicit-vector-programming-in-fortran

Optimization Reports:

https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-
optimization-reports

Beta Registration & Download:

https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta

For Intel® Xeon Phi™ coprocessors, but also applicable:
https://software.intel.com/en-us/articles/vectorization-essential
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization

 60

Additional Resources
All links start with: https://software.intel.com/

https://software.intel.com/en-us/articles/vectorization-advisor-faq
https://software.intel.com/en-us/articles/vectorization-advisor-faq
https://software.intel.com/en-us/articles/vectorization-advisor-faq
https://software.intel.com/en-us/articles/vectorization-advisor-faq
https://software.intel.com/en-us/articles/vectorization-advisor-faq
https://software.intel.com/en-us/articles/vectorization-advisor-faq
https://software.intel.com/en-us/articles/vectorization-advisor-faq
https://software.intel.com/en-us/articles/vectorization-advisor-faq
https://software.intel.com/en-us/articles/vectorization-advisor-faq
https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
https://software.intel.com/articles/explicit-vector-programming-in-fortran
https://software.intel.com/articles/explicit-vector-programming-in-fortran
https://software.intel.com/articles/explicit-vector-programming-in-fortran
https://software.intel.com/articles/explicit-vector-programming-in-fortran
https://software.intel.com/articles/explicit-vector-programming-in-fortran
https://software.intel.com/articles/explicit-vector-programming-in-fortran
https://software.intel.com/articles/explicit-vector-programming-in-fortran
https://software.intel.com/articles/explicit-vector-programming-in-fortran
https://software.intel.com/articles/explicit-vector-programming-in-fortran
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta
https://software.intel.com/en-us/articles/vectorization-essential
https://software.intel.com/en-us/articles/vectorization-essential
https://software.intel.com/en-us/articles/vectorization-essential
https://software.intel.com/en-us/articles/vectorization-essential
https://software.intel.com/en-us/articles/vectorization-essential
https://software.intel.com/en-us/articles/vectorization-essential
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Recap

62

AVX: Adding
2 vectors (SP)

+

=

Scalar
Processing

A B

C

+
Vector
Processing

Ci

+

Ai Bi

Ci

Ai Bi

Ci

Ai Bi

Ci

Ai Bi

VL

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2015v, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the
Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding
the specific instruction sets covered by this notice.

Notice revision #20110804

63

