
HPC codes modernization using vector
and threading parallelism – part I (intro)

Zakhar A. Matveev, PhD,

Intel Russia, Intel Software and Services Group

May‘ 2015

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Acknowledgments

2

This foildeck uses some content created by:

- Kevin O’Leary, Dick Kaiser, Mike Lee (from Parallel Studio
and Vectorization Advisor marketing and support teams)

- Geoff Lowney and Victor Lee (SIMD conference keynotes)

- James Reinders and Arch D. Robison

- Intel® Compiler architects

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Motivation

3

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Performance is a Proven Game Changer
It is driving disruptive change in multiple industries

4

Solving Austin, Texas’s traffic problem

Running advanced traffic simulations to improve the
models used to plan infrastructure and traffic
control changes

Protecting buildings from extreme events

Sophisticated mechanics simulations are performed
to identify innovative ways to protect infrastructure
from extreme events, such as natural disasters.

New possible treatments for Parkinson’s

Extensive calculations performed at supercomputer
helped researchers to learn more about the protein
structure’s evolution

Click on a picture for details

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

The “Free Lunch” is over, really
Processor clock rate growth halted around 2005

5

Source: © 2014, James Reinders, Intel, used with permission

Software must be parallelized to realize
all the potential performance

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Moore’s Law Is Going Strong
Hardware performance continues to grow exponentially

6

“We think we can continue Moore's Law
for at least another 10 years."

Intel Senior Fellow Mark Bohr, 2015

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Parallel Resources

C
o

re

C
o

re

C
o

re

C
o

re

C
o

re

C
o

re

C
o

re

Interconnect/LLC

C
o

re

C
o

re

C
o

re

C
o

re

C
o

re

C
o

re

C
o

re

Interconnect/LLC

Mciroprocessor Mciroprocessor Node

Cluster

ALU ALU ALU ALU

SIMD ALUs

Thread Thread

ALU ALU ALU ALU

SIMD ALUs

Core

Cluster → Node → Sockets → Processor/Co-processor → Core → Thread → SIMD (Vector)

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® Xeon®
processor

64-bit

Intel® Xeon®
processor

5100 series

Intel® Xeon®
processor

5500 series

Intel® Xeon®
processor

5600 series

Intel® Xeon®
processor

code-named

Sandy Bridge
EP

Intel® Xeon®
processor

code-named

Ivy Bridge
EP

Intel® Xeon®
processor
code-named

Haswell
EP

Core(s) 1 2 4 6 8 12 18

Threads 2 2 8 12 16 24 36

SIMD Width 128 128 128 128 256 256 256

Intel® Xeon Phi™
coprocessor

Knights
Corner

Intel® Xeon Phi™
processor &
coprocessor

Knights
Landing1

61 60+

244

512

*Product specification for launched and shipped products available on ark.intel.com. 1. Not launched or in planning.

High performance software must exploit both:

 Threading parallelism

 Vector data parallelism

More cores . More Threads . Wider vectors

8

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Why should we care about Vector SIMD
parallelism at all?

9

4C 6C 8C 12C 14C 4C

4 * SP 4*SP 4*SP 8*SP 8*SP 16*SP 32*SP

60C+

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® Advanced Vector Extensions

Since 2001:

128-bit Vectors
AVX: 2X flops: 256-bit wide floating-point vectors

AVX2: FMA (2x peak flops)

256-bit integer SIMD. “Gather” Instructions.

Sandy Bridge

(32 nm Tock)

2010 2011 2012 2013

Ivybridge

(22nm Tick)

Haswell

(22 nm Tock)

Knights Landing

/Future Xeon

8X peak FLOPs over 4 generations

AVX-512: 512-bit vectors

32 registers, Masking

10

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Westmere Sandybridge Ivybridge Haswell Knights Landing

vector

scalar

Instruction Growth

2014

Approximate numbers

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

0

20 000

40 000

60 000

80 000

100 000

120 000

140 000

160 000

O
p

ti
o

n
s

P
e

r
Se

c

2012
Intel® Xeon™

Processor

E5-2600
family formerly

codenamed

Sandy Bridge

2013
Intel® Xeon™

Processor

E5-2600 v2
family formerly

codenamed

Ivy Bridge

2010
Intel® Xeon™

Processor

X5680
formerly

codenamed

Westmere

2007
Intel® Xeon™

Processor

X5472
formerly

codenamed

Harpertown

2009
Intel® Xeon™

Processor

X5570
formerly

codenamed

Nehalem

2014
Intel® Xeon™

Processor

E5-2600 v3
family formerly

codenamed

Haswell

179x

B
in

o
m

ia
l

O
p

ti
o

n
s

P
e

r
S

e
c.

 S
P

(H

ig
h

e
r

is
 B

e
tt

e
r)

Untapped Potential Can Be Huge!

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark,
are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult
other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other
products. For more information go to http://www.intel.com/performance

Threaded Vectorized

 X

X

X X

11

Configurations for
Binomial Options SP

at the end
of this presentation

4C 6C 8C 12C 14C 4C

4 * SP 4*SP 4*SP 8*SP 8*SP 16*SP 32*SP

60C+

http://www.intel.com/performance

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

14C

0

20 000

40 000

60 000

80 000

100 000

120 000

140 000

160 000

O
p

ti
o

n
s

P
e

r
Se

c

2012
Intel® Xeon™

Processor

E5-2600
family formerly

codenamed

Sandy Bridge

2013
Intel® Xeon™

Processor

E5-2600 v2
family formerly

codenamed

Ivy Bridge

2010
Intel® Xeon™

Processor

X5680
formerly

codenamed

Westmere

2007
Intel® Xeon™

Processor

X5472
formerly

codenamed

Harpertown

2009
Intel® Xeon™

Processor

X5570
formerly

codenamed

Nehalem

2014
Intel® Xeon™

Processor

E5-2600 v3
family formerly

codenamed

Haswell

179x

B
in

o
m

ia
l

O
p

ti
o

n
s

P
e

r
S

e
c.

 S
P

(H

ig
h

e
r

is
 B

e
tt

e
r)

The Gap Untapped Potential Can Be Huge!
Threaded + Vectorized can be much faster than either one alone

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark,
are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult
other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other
products. For more information go to http://www.intel.com/performance

Threaded Vectorized

 X

X

X X

12

Many codes
are still here 4C 6C 8C 12C 4C

4 * SP 4*SP 4*SP 8*SP 8*SP 16*SP

http://www.intel.com/performance

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Multi-Threading and Vectorization =
Huge Potential

13

Current Intel Xeon processor
 12 cores
x 2 hyper-threads
x 8 lane (SP) vector unit per thread (x2 for FMA)

 = 384-folds parallelism for single socket

Let’s do some accounting..

Intel Many Integrated Core architecture
 > 60 cores
x ?? independent threads per core
x 16 lane (SP) vector unit per thread (x2 for FMA)

 = parallel heaven

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Don’t use a single Vector lane/thread!
Un-vectorized and un-threaded software will under perform

14

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Permission to Design for All Lanes
Threading and Vectorization needed to fully utilize modern hardware

15

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

SIMD vector parallelism for x86.

16

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Up to 8x Double-Precision Performance
with Intel® Advanced Vector Extensions 512 (Intel® AVX-512) Support

Higher performance for the most demanding computational tasks

- Significant leap to 512-bit SIMD support for
processors

- Intel® Compilers and Intel® Math Kernel Library
include AVX-512 support

- Strong compatibility with AVX

- Added EVEX prefix enables additional
functionality

- Appears first in future Intel® Xeon Phi™
coprocessor, code named Knights Landing

x

x

x

17

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Why SIMD vector parallelism?

18

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Why SIMD vector parallelism?

19

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Why SIMD vector parallelism?

20

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

512b AVX512

64SP / 32 DP
 Flops/Cycle (FMA)

256b AVX2

32 SP / 16 DP
 Flops/Cycle (FMA)

AVX512

512-bit FP/Integer

32 registers

8 mask registers

Embedded rounding

Embedded broadcast

Scalar/SSE/AVX “promotions”

HPC additions

Transcendental support

Gather/Scatter

AVX AVX2

256-bit basic FP

16 registers

NDS (and AVX128)

Improved blend

MASKMOV

Implicit unaligned

Float16 (IVB 2012)

256-bit FP FMA

256-bit integer

PERMD

Gather

SNB
2011

HSW
2013

Future Processors (KNL & future

Xeon)

Intel® AVX Technology

256b AVX

16 SP / 8 DP
 Flops/Cycle

21

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

What is a Vector?

22

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Vector of numbers

23

[]

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Vector addition

24

[]

[]

[]

+

=

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

…and Vector multiplication

25

[]

[]

[]

[]

[]

[]

+

=

×

=

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

An example

26

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

vector data operations:
data operations done in parallel

void v_add (float *c,

 float *a,

 float *b)

{

 for (int i=0; i<= MAX; i++)

 c[i]=a[i]+b[i];

}

27

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

vector data operations:
data operations done in parallel

void v_add (float *c,

 float *a,

 float *b)

{

 for (int i=0; i<= MAX; i++)

 c[i]=a[i]+b[i];

}

Loop:
1. LOAD a[i] -> Ra
2. LOAD b[i] -> Rb
3. ADD Ra, Rb -> Rc
4. STORE Rc -> c[i]
5. ADD i + 1 -> i

28

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

vector data operations:
data operations done in parallel

void v_add (float *c,

 float *a,

 float *b)

{

 for (int i=0; i<= MAX; i++)

 c[i]=a[i]+b[i];

}

Loop:
1. LOAD a[i] -> Ra
2. LOAD b[i] -> Rb
3. ADD Ra, Rb -> Rc
4. STORE Rc -> c[i]
5. ADD i + 1 -> i

Loop:
1. LOADv4 a[i:i+3] -> Rva
2. LOADv4 b[i:i+3] ->

Rvb
3. ADDv4 Rva, Rvb ->

Rvc
4. STOREv4 Rvc ->

c[i:i+3]
5. ADD i + 4 -> i

29

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

vector data operations:
data operations done in parallel

void v_add (float *c,

 float *a,

 float *b)

{

 for (int i=0; i<= MAX; i++)

 c[i]=a[i]+b[i];

}

Loop:
1. LOAD a[i] -> Ra
2. LOAD b[i] -> Rb
3. ADD Ra, Rb -> Rc
4. STORE Rc -> c[i]
5. ADD i + 1 -> i

We call this “vectorization”

Loop:
1. LOADv4 a[i:i+3] -> Rva
2. LOADv4 b[i:i+3] ->

Rvb
3. ADDv4 Rva, Rvb ->

Rvc
4. STOREv4 Rvc ->

c[i:i+3]
5. ADD i + 4 -> i

30

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

31

Intel® SSE and AVX-128 Data Types

4x floats SSE

16x bytes

8x 16-bit shorts

4x 32-bit integers

2x 64-bit integers

1x 128-bit(!) integer

2x doubles

SSE-2

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

32

AVX-256 Data Types

Intel®

AVX2

8x floats

4x doubles
Intel®

AVX

32x bytes

16x 16-bit shorts

8x 32-bit integers

4x 64-bit integers

2x 128-bit(!) integer

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Data Types for Intel® MIC
Architecture

16x floats

8x doubles

16x 32-bit integers

MIC

5/25/2015 33

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Next generation Intel® Xeon Phi™

34

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Next Intel® Xeon Phi™ Product Family
(Codenamed Knights Landing)

35

All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change
without notice.

 Available in Intel cutting-
edge 14 nanometer
process

 Stand alone CPU or PCIe
coprocessor – not
bound by ‘offloading’
bottlenecks

 Integrated Memory -
balances compute with
bandwidth

Parallel is the path forward, Intel is
your roadmap!

35 Note that code name above is not the product name

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Knights Landing: Next Generation
Intel® Xeon Phi™Product Family

36

Commonality & backward compatibility of next-
gen 512-bit instruction set architectures;

supported on future Intel® Xeon® processors to
be introduced after Knights Landing.

Not bound by “offloading”
bottlenecks

 Standalone CPU or
PCIe Coprocessor

Leadership compute & memory
bandwidth

Integrated on-
package
Memory

Designed using Intel’s cutting-edge

14nm Transistor
Technology

Common instruction set architecture

Intel® Advanced
Vector Extensions 512

On-package memory will significantly increase
memory bandwidth, delivering greater

performance for memory-bound workloads and
help scale the Exascale memory wall. Learn More

As a host processor directly installed on the
motherboard, Knights Landing will deliver a leap
in compute density, power efficiency & reliability.

Intel leads the industry in transistor technology
by about three years; 14nm technology will
deliver more compute density and power

efficiency than any previous Intel processor.1

1 http://newsroom.intel.com/community/intel_newsroom/blog/2013/09/10/new-intel-ceo-president-outline-product-plans-future-of-computing-vision-to-
mobilize-intel-and-developers

http://newsroom.intel.com/community/intel_newsroom/blog/2013/06/17/intel-powers-the-worlds-fastest-supercomputer-reveals-new-and-future-high-performance-computing-technologies
http://newsroom.intel.com/community/intel_newsroom/blog/2013/09/10/new-intel-ceo-president-outline-product-plans-future-of-computing-vision-to-mobilize-intel-and-developers
http://newsroom.intel.com/community/intel_newsroom/blog/2013/09/10/new-intel-ceo-president-outline-product-plans-future-of-computing-vision-to-mobilize-intel-and-developers
http://newsroom.intel.com/community/intel_newsroom/blog/2013/09/10/new-intel-ceo-president-outline-product-plans-future-of-computing-vision-to-mobilize-intel-and-developers
http://newsroom.intel.com/community/intel_newsroom/blog/2013/09/10/new-intel-ceo-president-outline-product-plans-future-of-computing-vision-to-mobilize-intel-and-developers
http://newsroom.intel.com/community/intel_newsroom/blog/2013/09/10/new-intel-ceo-president-outline-product-plans-future-of-computing-vision-to-mobilize-intel-and-developers
http://newsroom.intel.com/community/intel_newsroom/blog/2013/09/10/new-intel-ceo-president-outline-product-plans-future-of-computing-vision-to-mobilize-intel-and-developers
http://newsroom.intel.com/community/intel_newsroom/blog/2013/09/10/new-intel-ceo-president-outline-product-plans-future-of-computing-vision-to-mobilize-intel-and-developers
http://newsroom.intel.com/community/intel_newsroom/blog/2013/09/10/new-intel-ceo-president-outline-product-plans-future-of-computing-vision-to-mobilize-intel-and-developers
http://newsroom.intel.com/community/intel_newsroom/blog/2013/09/10/new-intel-ceo-president-outline-product-plans-future-of-computing-vision-to-mobilize-intel-and-developers
http://newsroom.intel.com/community/intel_newsroom/blog/2013/09/10/new-intel-ceo-president-outline-product-plans-future-of-computing-vision-to-mobilize-intel-and-developers
http://newsroom.intel.com/community/intel_newsroom/blog/2013/09/10/new-intel-ceo-president-outline-product-plans-future-of-computing-vision-to-mobilize-intel-and-developers
http://newsroom.intel.com/community/intel_newsroom/blog/2013/09/10/new-intel-ceo-president-outline-product-plans-future-of-computing-vision-to-mobilize-intel-and-developers
http://newsroom.intel.com/community/intel_newsroom/blog/2013/09/10/new-intel-ceo-president-outline-product-plans-future-of-computing-vision-to-mobilize-intel-and-developers
http://newsroom.intel.com/community/intel_newsroom/blog/2013/09/10/new-intel-ceo-president-outline-product-plans-future-of-computing-vision-to-mobilize-intel-and-developers
http://newsroom.intel.com/community/intel_newsroom/blog/2013/09/10/new-intel-ceo-president-outline-product-plans-future-of-computing-vision-to-mobilize-intel-and-developers
http://newsroom.intel.com/community/intel_newsroom/blog/2013/09/10/new-intel-ceo-president-outline-product-plans-future-of-computing-vision-to-mobilize-intel-and-developers
http://newsroom.intel.com/community/intel_newsroom/blog/2013/09/10/new-intel-ceo-president-outline-product-plans-future-of-computing-vision-to-mobilize-intel-and-developers
http://newsroom.intel.com/community/intel_newsroom/blog/2013/09/10/new-intel-ceo-president-outline-product-plans-future-of-computing-vision-to-mobilize-intel-and-developers
http://newsroom.intel.com/community/intel_newsroom/blog/2013/09/10/new-intel-ceo-president-outline-product-plans-future-of-computing-vision-to-mobilize-intel-and-developers
http://newsroom.intel.com/community/intel_newsroom/blog/2013/09/10/new-intel-ceo-president-outline-product-plans-future-of-computing-vision-to-mobilize-intel-and-developers
http://newsroom.intel.com/community/intel_newsroom/blog/2013/09/10/new-intel-ceo-president-outline-product-plans-future-of-computing-vision-to-mobilize-intel-and-developers
http://newsroom.intel.com/community/intel_newsroom/blog/2013/09/10/new-intel-ceo-president-outline-product-plans-future-of-computing-vision-to-mobilize-intel-and-developers
http://newsroom.intel.com/community/intel_newsroom/blog/2013/09/10/new-intel-ceo-president-outline-product-plans-future-of-computing-vision-to-mobilize-intel-and-developers
http://newsroom.intel.com/community/intel_newsroom/blog/2013/09/10/new-intel-ceo-president-outline-product-plans-future-of-computing-vision-to-mobilize-intel-and-developers
http://newsroom.intel.com/community/intel_newsroom/blog/2013/09/10/new-intel-ceo-president-outline-product-plans-future-of-computing-vision-to-mobilize-intel-and-developers
http://newsroom.intel.com/community/intel_newsroom/blog/2013/09/10/new-intel-ceo-president-outline-product-plans-future-of-computing-vision-to-mobilize-intel-and-developers
http://newsroom.intel.com/community/intel_newsroom/blog/2013/09/10/new-intel-ceo-president-outline-product-plans-future-of-computing-vision-to-mobilize-intel-and-developers
http://newsroom.intel.com/community/intel_newsroom/blog/2013/09/10/new-intel-ceo-president-outline-product-plans-future-of-computing-vision-to-mobilize-intel-and-developers
http://newsroom.intel.com/community/intel_newsroom/blog/2013/09/10/new-intel-ceo-president-outline-product-plans-future-of-computing-vision-to-mobilize-intel-and-developers
http://newsroom.intel.com/community/intel_newsroom/blog/2013/09/10/new-intel-ceo-president-outline-product-plans-future-of-computing-vision-to-mobilize-intel-and-developers
http://newsroom.intel.com/community/intel_newsroom/blog/2013/09/10/new-intel-ceo-president-outline-product-plans-future-of-computing-vision-to-mobilize-intel-and-developers
http://newsroom.intel.com/community/intel_newsroom/blog/2013/09/10/new-intel-ceo-president-outline-product-plans-future-of-computing-vision-to-mobilize-intel-and-developers
http://newsroom.intel.com/community/intel_newsroom/blog/2013/09/10/new-intel-ceo-president-outline-product-plans-future-of-computing-vision-to-mobilize-intel-and-developers

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Cache
Model

Let the hardware automatically
manage the integrated on-package
memory as an “L3” cache between KNL
CPU and external DDR

Flat
Model

Manually manage how your
application uses the integrated on-
package memory and external DDR for
peak performance

Hybrid
Model

Harness the benefits of both cache and
flat models by segmenting the
integrated on-package memory

Maximizes performance through higher
 memory bandwidth and flexibility1

Knights Landing Integrated On-Package
Memory

37

Near
Memory

KNL
CPU

HBW
On-

Package
Memory

. . .

. . .

HBW
On-

Package
Memory

HBW
On-

Package
Memory

HBW
On-

Package
Memory

HBW
On-

Package
Memory

HBW
On-

Package
Memory

CPU Package

DDR

DDR

DDR

. . .

Cache

PCB

Near
Memory

Far
 Memory

Side
View

Top
View

1 As compared with Intel® Xeon Phi™ x100 Coprocessor Family
Diagram is for conceptual purposes only and only illustrates a CPU and memory – it is not to scale, and is not representative of actual
component layout.

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Parallel programming models.
“3 layer cake” with OpenMP4.x examples

38

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

C
o

re

C
o

re

C
o

re

C
o

re

C
o

re

C
o

re

C
o

re

Interconnect/LLC

C
o

re

C
o

re

C
o

re

C
o

re

C
o

re

C
o

re

C
o

re

Interconnect/LLC

Microprocessor Microprocessor Node

Cluster

ALU ALU ALU ALU

SIMD ALUs

Thread Thread

ALU ALU ALU ALU

SIMD ALUs

Core

Cluster → Node → Sockets → Processor/Co-processor → Core → Thread → SIMD (Vector)

How could we program these parallel
machines?

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

How could we program these parallel
machines?

40

B

C

A “Three Layer Cake”

“abstracts” common
hybrid parallelism

programming
approaches

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

How could we program these parallel
machines?

41

B

C

A A – Message

Passing

B – Fork-Join

C- SIMD

A: exploit multiple
nodes, distributed
memory

B – exploit multiple
cores, hardware
threads

C- exploit vector
units

Parallelism type Exploiting hardware* :

* - alternate hardware mappings also possible

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

How could we program these parallel
machines?

42

B

C

A A – MPI, tbb::flow,

PGAS

B – OpenMP4.x,
Cilk Plus, TBB

C - OpenMP4.x,
Cilk Plus

Programming models Software tools

Cluster Edition

Professional Edition

Implementing the Cake

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

How could we program these parallel
machines?

43

B

C

• Different methods exist
• OpenMP4.x:

• Industry standard

• C/C++ and Fortran

• Supported by Intel Compiler
(14, 15, 16), GCC 4.9, …

• Both levels of hardware
parallelism: threading and
vector

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

 #pragma omp parallel for

 for (int y = 0; y < ImageHeight; ++y){

 #pragma omp simd

 for (int x = 0; x < ImageWidth; ++x){
 count[y][x] = mandel(in_vals[y][x]);
 }
 }

 2 level parallelism decomposition with
OpenMP4.x: image processing example

B

C

44

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

 #pragma omp parallel for

 for (int i = 0; i < X_Dim; ++i){

 #pragma omp simd

 for (int m = 0; x < n_velocities; ++m){
 next_i = f(i, velocities(m));
 X[i] = next_i;
 }
 }

B

C

2L parallelism decomposition with
OpenMP4.x: fluid dynamics example

45

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Many Ways to Vectorize

Ease of use Compiler:
Auto-vectorization (no change of code)

Programmer control

Compiler:
Auto-vectorization hints (#pragma vector, …)

SIMD intrinsic class
(e.g.: F32vec, F64vec, …)

Vector intrinsic
(e.g.: _mm_fmadd_pd(…), _mm_add_ps(…), …)

Assembler code
(e.g.: [v]addps, [v]addss, …)

Explicit Vector Programming (OpenMP4.x,
Intel Cilk Plus)

5/25/2015 46
46

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Thread Level Parallelism SIMD Parallelism

OpenMP4.x: threading and vectors

5/25/2015 47

Ease of use

Programmer
control

Auto-Parallel
invoked by compiler switch,
some loops parallelized
automatically by compiler
`

Auto-Vectorization
invoked at O2, some loops
vectorized automatically by
compiler, developer can
provide a few hints to the
compiler

Parallelization using OpenMP*
threading
Developer guides
parallelization via statements
and lexicon of clauses

Vectorization using OpenMP*
4.0 simd
Developer guides vectorization
via statements and lexicon of
clauses

Parallelization using Posix* or
Windows* Threads

Vectorization using Intrinsics

47

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Explicit Vector Programming with OpenMP 4.0

48

In
p

u
t:

 C
/C

+
+

/F
O

R
T

R
A

N
 s

o
u

rc
e

 c
o

d
e

Vectorizer

Intel® SSE Intel® AVX Intel® MIC

Map vector parallelism to vector ISA

V
e

ct
o

r
p

a
rt

 o
f

O
p

e
n

M
P

*
4

.0
 e

xt
e

n
si

o
n

In
p

u
t:

 C
/C

+
+

/F
O

R
T

R
A

N
 s

o
u

rc
e

 c
o

d
e

Vectorizer

Intel® SSE Intel® AVX Intel® MIC

Optimize and
Code Generation
Optimization and
Code Generation

Vectorizer makes
retargeting easy!

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Compile with –xavx (Intel® AVX; Sandy Bridge etc)

Compile with –xcore-avx2 (Intel® AVX2; Haswell)

 Intel processors only (Use -mavx, -march=core-avx2 for non-Intel)

 Vectorization works just as for SSE

 Best if 32 byte aligned

 More loops can be vectorized than with SSE

 Individually masked data elements

 More powerful data rearrangement instructions

-axavx (-axcore-avx2) gives both SSE2 and newer ISA code
paths

 (!) but use –x or –m switches to modify the default SSE2 code path

 Eg –axcore-avx2 –xavx to target both Haswell and Sandy Bridge
 (/Qaxcore-avx2 /Qxavx on Windows*)

Math libraries may target AVX and/or AVX2 automatically at runtime

49

Compiling for Intel® AVX(2)

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

SIMD Pragma Notation

OpenMP 4.0: #pragma omp simd [clause [,clause] …]

• Targets loops

• Can target inner or outer canonical loops

• Developer asserts loop is suitable for SIMD

• The Intel Compiler will vectorize if possible (will ignore
dependency or efficiency concerns)

• Use when you KNOW that a given loop is safe to vectorize

• Can choose from lexicon of clauses to modify behavior of SIMD
directive

• Developer should validate results (correctness)

• Just like for race conditions in OpenMP* threading loops

• Minimizes source code changes needed to enforce vectorization

50

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

OMP SIMD Pragma Clauses
reduction(operator:v1, v2, …)

 v1 etc are reduction variables for operation “operator”

 Examples include computing averages or sums of arrays into a single
scalar value : reduction (+:sum)

linear(v1:step1, v2:step2, …)

 declares one or more list items to be private to a SIMD lane and to
have a linear relationship with respect to the iteration space of a
loop : linear (i:2)

safelen (length)

 no two iterations executed concurrently with SIMD instructions can
have a greater distance in the logical iteration space than this value

 Typical values are 2, 4, 8, 16

Refer to OpenMP 4.0 Specification.
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

51

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

OMP SIMD Pragma Clauses cont…
aligned(v1:alignment, v2:alignment)

 declares that the object to which each list item points is aligned to the
number of bytes expressed in the optional parameter of the aligned
clause.

collapse(number of loops)

 Nested loop iterations are collapsed into one loop with a larger iteration
space.

private(v1, v2, …), lastprivate (v1, v2, …)

 declares one or more list items to be private to an implicit task or to a
SIMD lane, lastprivate causes the corresponding original list item to be
updated after the end of the region..

52

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

SIMD-enabled functions

Write a function for one element and add pragma as follows

Call the scalar version:

Call vector version via SIMD loop:

53

#pragma omp declare simd

float foo(float a, float b, float c, float d)

{

 return a * b + c * d;

}

#pragma omp simd

for(i = 0; i < n; i++) {

 A[i] = foo(B[i], C[i], D[i], E[i]);

}

A[:] = foo(B[:], C[:], D[:], E[:]);

e = foo(a, b, c, d);

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

What’s New in Beta

54

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® C/C++ and Fortran Compilers 16.0
Get best performance with latest standards

55

• More of C++14, generic lambdas, member initializers and aggregates

• More of C11, _Static_assert, _Generic, _Noreturn, and more

• OpenMP 4.0 C++ User Defined Reductions, Fortran Array Reductions

• OpenMP 4.1 asynchronous offloading, simdlen, simd ordered

• F2008 Submodules, Impure Elemental Functions

• F2015 TYPE(*), DIMENSION(..), RANK intrinsic, attributes for args with

BIND

• Significant improvement in alignment analysis, vectorization

robustness

• Much improved Neighboring Gather optimization

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

56

Intel® Advisor XE – New! Vectorization Advisor
Data Driven Vectorization Design

Have you:
 Recompiled with AVX2, but seen little

benefit?

 Wondered where to start adding
vectorization?

 Recoded intrinsics for each new
architecture?

 Struggled with cryptic compiler
vectorization messages?

Breakthrough for vectorization design
 What vectorization will pay off the most?

 What is blocking vectorization and why?

 Are my loops vector friendly?

 Will reorganizing data increase
performance?

 Is it safe to just use pragma simd?

More Performance
Fewer Machine Dependencies

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

57

Intel® Advisor XE – Vectorization Advisor
Provides the data you need for high impact vectorization

Compiler diagnostics + Performance Data = All the data you need in one place

 Find “hot” un-vectorized or “under vectorized” loops.

 Trip counts

Recommendations – How do I fix it?

Correctness via dependency analysis

 Is it safe to vectorize?

Memory Access Patterns analysis

 Unit stride vs Non-unit stride access, Unaligned memory access, etc.

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Additional Sparse Matrix Vector Multiplication API

 new two-stage API for Sparse BLAS level 2 and 3 routines

MKL MPI wrappers

 all MPI implementations are API-compatible but MPI implementations are not ABI-compatible

 MKL MPI wrapper solves this problem by providing an MPI-independent ABI to MKL

Support For Batched Small Matrix multiplication

 a single call executes multiple independent ?GEMM operation simultaneously

Support for Philox4x35 and ARS5 RNG

 two new pseudorandom number generators with a period of 2^128 are highly optimized for multithreaded

environment

Sparse Solver SMP improvements

 significantly improved overall scalability for Intel Xeon Phi coprocessors and Intel Xeon processors

58

Intel® Math Kernel Library (Intel® MKL) 11.3
Better performance with new two-stage API for Sparse BLAS routines

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

New library targeting data analytics market

 Customers: analytics solution providers, system
integrators, and application developers (FSI, Telco,
Retail, Grid, etc.)

 Key benefits: improved time-to-value, forward-
scaling performance and parallelism on IA, advanced
analytics building blocks

Key features

 Building blocks highly optimized for IA to support all
data analysis stages

 Support batch, streaming, and distributed processing
with easy connectors to popular platforms (Hadoop,
Spark) and tools (R, Python, Matlab)

 Flexible interfaces for handling different data
sources (CSV, MySQL, HDFS, RDD (Spark))

 Rich set of operations to handle sparse and noisy
data

 C++ and Java APIs

6 releases of Tech Preview
in 2014.

First Beta in Feb’15. First
gold release in Aug’15.

Analysis

•PCA
•Variance-Covariance Matrix

•Distances

•Matrix decompositions (SVD, QR, Cholesky)

•EM for GMM
•Uni-/multi-variate outlier detection

•Statistical moments

Machine learning

• Linear regression
• Apriori

• K-Means clustering

• Naïve Bayes

• LogitBoost, BrownBoost, AdaBoost
• SVM

A C++ and Java API library of optimized analytics building blocks for all data analysis stages, from data acquisition to
data mining and machine learning. Essential for engineering high performance Big Data applications.

Important features offered in the initial Beta

• Data layouts: AOS, SOA, homogeneous, CSR
• Data sources: csv, MySQL, HDFS/RDD
• Compression/decompression: ZLIB, LZO, RLE, BZIP2
• Serialization/deserialization

Data Processing

Optimized analytics building blocks for all data
analysis stages, from data acquisition to data

mining and machine learning.

Data Modeling

Data structures for model representation, and
operations to derive model-based predictions and

conclusions.

Data Management

Interfaces for data representation and access.
Connectors to a variety of data sources and data
formats, such HDFS, SQL, CSV, ARFF, and user-

defined data source/format.

Data
Sources

Numeric
Tables

Outliers Detection

Compression /
Decompression

Serialization /
Deserialization

Intel® Data Analytics Acceleration Library 2016

59

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® VTune™ Amplifier XE 2016 Beta
Enhanced GPU and Microarchitecture Profiling

60

New OS and IDE support: Visual
Studio* 2015 & Windows* 10
Threshold

Intel® HD Graphics (GPU) profiling

 GPU Architecture Annotation
Diagram

 GPU profiling on Linux (OpenCL,
Media SDK)

Microarchitecture tuning

 General Exploration analysis with
confidence indication

 Driverless ‘perf’ EBS with stacks

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® VTune™ Amplifier XE 2016 Beta
Improved OpenMP* and Hybrid Support

61

Intel OpenMP analysis
enhancements

 Precise trace-based imbalance
calculation that is especially useful for
profiling of small region instances

 Classification and issue highlighting of
potential gains, e.g., imbalance, lock
contention, creation overhead, etc.

 Detailed analysis of barrier-to-barrier
region segments

MPI+OpenMP: multi-rank analysis
on a compute node

 Per-rank OpenMP potential gain and
serial time metrics

 Per-rank Intel MPI communication busy
wait time detection

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Lightweight – Low overhead
profiling for 32K+ Ranks

Scalability- Performance
variation at scale can be
detected sooner

Identifying Key Metrics –
Shows PAPI counters and
MPI/OpenMP imbalances

62

MPI Performance Snapshot
Scalable profiling for MPI and Hybrid

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

ISA (AVX, AVX2, AVX512) : basic insight

63

Intel® AVX

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

65

Intel® Advanced Vector Extensions (Intel®
AVX)

• Wider Vectors

 Increased from 128 bit to 256 bit

KEY FEATURES BENEFITS

• Up to 2x peak FLOPs output with good
power efficiency

Intel® AVX is a general purpose architecture,

expected to supplant SSE in all applications used today

• Enhanced Data Rearrangement
– Use the new 256 bit primitives to

broadcast, mask loads and permute
data

• Organize, access and pull only
necessary data more quickly and
efficiently

• Flexible unaligned memory access
support

• More opportunities to fuse load and
compute operations

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Applications likely to benefit from
rebuilding for Intel® AVX

• Significant time spent in floating-point vectorizable loops with
iteration count > vector length (8 floats, 4 doubles)

• Vectorization with SSE is a good initial indication

• Calls to optimized performance libraries, e.g. MKL

• Might not even need rebuilding

Less likely to benefit:

• Scalar or integer code;

• Heavy use of double precision division or square root

• Applications that are memory bound

66

Intel® AVX2

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® AVX2: Key Features

1. Extends 128-bit integer vector instructions to
256-bit

• Including*: Intel® SSE2, Intel SSE3, SSSE3 and Intel SSE4

(some special instructions excepted)

2. Floating Point Fused Multiply Add: A*B + C
• Increased FLOPS potential

• Increased accuracy – Only a single rounding

3. Enhanced vectorization with Gather, Shifts and
powerful permutes

Uses the same 256-bit YMM registers as Intel AVX

68

Intel AVX2 completes the 256-bit extensions started with Intel AVX: 256-
bit integer , cross-lane permutes, gather, FMA

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Other Features of Haswell (wrt AVX2)

Improved cache bandwidth to feed wide vector
units and FMAs

• 32-byte load/store for L1 -> 2X bandwidth

• 2x L2 bandwidth

2 new ports:

• additional ALU and new branch unit

• new AGU (address generation unit) for stores;

69

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Optimizing for Intel® AVX2

Additional speedups come from:
• Wider SIMD integer instructions

• Fused multiply-add instructions (e.g. linear algebra)

• Gather & permute instructions enable more
vectorization for indirect referencing

float *a, *b;
 for (i=0; i<imax; i++)
 if (ind[i]>=0 && ind[i]<
indmax)
 a[i] = b[ind[i]]

• More efficient general 32 byte loads (but still try to
align data to 32 byte boundary)

70

Intel® AVX512

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

512b AVX512

64SP / 32 DP
 Flops/Cycle (FMA)

256b AVX2

32 SP / 16 DP
 Flops/Cycle (FMA)

AVX512

512-bit FP/Integer

32 registers

8 mask registers

Embedded rounding

Embedded broadcast

Scalar/SSE/AVX “promotions”

Transcendental support

Gather/Scatter

AVX AVX2

256-bit basic FP

16 registers

NDS (and AVX128)

Improved blend

MASKMOV

Implicit unaligned

Float16 (IVB 2012)

256-bit FP FMA

256-bit integer

PERMD

Gather

SNB
2011

HSW
2013

Future Processors (KNL & Future

Xeon)

Intel® AVX Technology

256b AVX1

16 SP / 8 DP
 Flops/Cycle

72

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Math Support

Instruction

VGETXEXP{PS,PD,SS,SD}

VGETMANT{PS,PD,SS,SD}

VRNDSCALE{PS,PD,SS,SD}

VSCALEF {PS,PD,SS,SD}

VFIXUPIMM{PS,PD,SS,SD}

VRCP14{PS,PD,SS,SD}

VRSQRT14{PS,PD,SS,SD}

VDIV{PS,PD,SS,SD}

VSQRT{PS,PD,SS,SD}

zmm1 {k1}, zmm2 Obtain exponent in FP format

zmm1 {k1}, zmm2 Obtain normalized mantissa

zmm1 {k1}, zmm2, imm8 Round to scaled integral number

zmm1 {k1}, zmm2, zmm3 X*2y , X <= getmant, Y <= getexp

zmm1, zmm2, zmm3, imm8 Patch output numbers based on inputs

zmm1 {k1}, zmm2 Approx. reciprocal() with rel. error 2-14

zmm1 {k1}, zmm2 Approx. rsqrt() with rel. error 2-14

zmm1 {k1}, zmm2, zmm3 IEEE division

zmm1 {k1}, zmm2 IEEE square root

30

Package to aid with Math library writing
• Good value upside in financial applications
• Available in PS, PD, SS and SD data types
• Great in combination with embedded RC

73

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Why True Masking?
Memory fault suppression

 Vectorize code without touching
memory that the correspondent scalar code
would not touch

 Typical examples are if-conditional
statements or loop remainders

 AVX is forced to use VMASKMOV* (risc)

MXCSR flag updates and fault handlers

 Avoid spurious floating-point exceptions without
having to inject neutral data

Zeroing/merging

 Use zeroing to avoid false dependencies in OOO
architecture

 Use merging to avoid extra blends in if-then-else
clauses (predication) for great code density

float32 A[N], B[N], C[N];

for(i=0; i<16; i++)
{
 if(B[i] != 0) {
 A[i] = A[i] / B[i];
 else {
 A[i] = A[i] / C[i];
 }
}

VMOVUPS zmm2, A

VCMPPS k1, zmm0, B

VDIVPS zmm1 {k1}{z}, zmm2, B

KNOT k2, k1

VDIVPS zmm1 {k2}, zmm2, C

VMOVUPS A, zmm1

74

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Back-up

75

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Support for data divergence

76

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Support for control flow divergence

77

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Object-oriented programming

78

Class Point {float
x,y,z;}
Class Triangle {Point
a,b,c;}
Triangle T[100];

x y z x y z x y z

 a b c

x y z x y z x y z

 a b c

 T[0] T[1]

void ComputeNormals(Point normal[__restrict], const
Triangle p[], size_t n)
 for(size_t i=0; i<n; ++i)
 normal[i] = Cross(p[i].b-p[i].a, p[i].c-p[i].a);
}

Point Cross(const Point& a, const Point& b) {
 return Point(a.y*b.z-a.z*b.y, a.z*b.x-a.x*b.z,
a.x*a.y-a.y-b.x);
}

Object oriented programming may inhibit SIMD
code generation

78

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Object-oriented programming, 2

79

Class Point {float
x,y,z;}
Class Triangle {Point
a,b,c;}
Triangle T[100];

x y z x y z x y z

 a b c

x y z x y z x y z

 a b c

 T[0] T[1]

Struct {
 float x[100];
 float y[100];
 float z[100];
} T;

z z z

y y y

x x x

 a b c

z z z

y y y

x x x

 a b c

 T[0] T[1]

Limited language support for “structure of arrays”

Problem: OOP is easier for the programmer and more
efficient if access is not-linear (cache locality)

Solution - consider “AoSoA”
79

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Example of Outer Loop Vectorization
#pragma omp declare simd
int lednam(float c)
{ // Compute n >= 0 such that c^n > LIMIT
 float z = 1.0f; int iters = 0;
 while (z < LIMIT) {
 z = z * c; iters++;
 }
 return iters;
}

float in_vals[];
#pragma omp simd
for(int x = 0; x < Width; ++x) {
 count[x] = lednam(in_vals[x]);
}

80

x = 0 x = 1 x = 2 x = 3

float in_vals[];
#pragma omp parallel for simd
for(int x = 0; x < Width; ++x) {
 count[x] = lednam(in_vals[x]);
}

float in_vals[];
#pragma omp simd
for(int x = 0; x < Width; ++x) {
 count[x] = lednam(in_vals[x]);
}

z = z * c

z = z * c

iters = 2

z = z * c

z = z * c

….

iters = 23

z = z * c

z = z * c

……….……...

iters = 255

z = z * c

z = z * c

……..

iters = 37

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

 DO 1 k = 1,n
 1 A(k) = B(k) + C(k)

Vector code generation was straightforward
Emphasis on analysis and disambiguation

Vectorization yesterday

81

K=1

Ld C(1)

Ld B(1)

Add

St A(1)

K=2

Ld C(2)

Ld B(2)

Add

St A(2)

K=1..2

Ld C(1)

Ld B(1)

Add

St A(1)

Ld C(2)

Ld B(2)

Add

St A(2)

Scalar code
Vector code

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Vectorization today

Vector code generation has become a more difficult problem
Increasing need for user guided explicit vectorization

Explicit vectorization maps threaded execution to simd hardware

Two fundamental problems
 Data divergence
 Control divergence

p=0

82

2

Are all
lanes done?

p=0..1

Function call

x1

y1

Vector Function call

x1, x2

y1, y2

#pragma omp simd reduction(+:….)

for(p=0; p<N; p++) {
 // Blue work
 if(…) {
 // Green work
 } else {
 // Red work
 }
 while(…) {
 // Gold work
 // Purple work
 }
 y = foo (x);
 Pink work
}

p=1

3

Function call

x2

y2

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Configurations for Binomial Options SP

Platform

Unscaled
Core

Frequency
Cores/
Socket

Num
Sockets

L1
Data

Cache
L1 I

Cache
L2

Cache
L3

Cache Memory
Memory

Frequency
Memory
Access

H/W
Prefetchers

Enabled
HT

Enabled
Turbo

Enabled C States
O/S

Name
Operating

System
Compiler
Version

Intel® Xeon™
5472 Processor 3.0 GHZ 4 2 32K 32K 12 MB None 32 GB 800 MHZ UMA Y N N Disabled

Fedora
20

3.11.10-
301.fc20

icc version
14.0.1

Intel® Xeon™
X5570 Processor 2.93 GHZ 4 2 32K 32K 256K 8 MB 48 GB 1333 MHZ NUMA Y Y Y Disabled

Fedora
20

3.11.10-
301.fc20

icc version
14.0.1

Intel® Xeon™
X5680 Processor 3.33 GHZ 6 2 32K 32K 256K 12 MB 48 MB 1333 MHZ NUMA Y Y Y Disabled

Fedora
20

3.11.10-
301.fc20

icc version
14.0.1

Intel® Xeon™ E5
2690 Processor 2.9 GHZ 8 2 32K 32K 256K 20 MB 64 GB 1600 MHZ NUMA Y Y Y Disabled

Fedora
20

3.11.10-
301.fc20

icc version
14.0.1

Intel® Xeon™ E5
2697v2 Processor 2.7 GHZ 12 2 32K 32K 256K 30 MB 64 GB 1867 MHZ NUMA Y Y Y Disabled

Fedora
20

3.11.10-
301.fc20

icc version
14.0.1

Codename
Haswell 2.2 GHz 14 2 32K 32K 256K 35 MB 64 GB 2133 MHZ NUMA Y Y Y Disabled

Fedora
20

3.13.5-
202.fc20

icc version
14.0.1

Platform Hardware and Software Configuration

Optimization Notice
Intel’s compilers may or may not optimize to the same degree for non-Intel
microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations.
Intel does not guarantee the availability, functionality, or effectiveness of any optimization
on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations
in this product are intended for use with Intel microprocessors. Certain optimizations not
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice. Notice revision #20110804

Performance measured in Intel Labs by Intel employees

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2015v, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the
Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding
the specific instruction sets covered by this notice.

Notice revision #20110804

84

