

The GEMPix detector for energy deposition measurements in Hadrontherapy

F. Murtas^{1,2}, M. Silari¹, S. George¹, J.Lindner¹

A. Rimoldi^{2,3}, A. Tamborini², M. Ciocca⁴ and A. Mirandola⁴

CERN, 2) INFN, 3) Università di Pavia,
 Unità Fisica Medica CNAO

Centro Nazionale di Adroterapia Oncologica per il trattamento dei tumori

Two Micro Pattern Detectors

Gas Electron Multiplier 70 μm 140 μm

F.Murtas 19/2/2016 ICTR-PHE 2016 Geneva

4 Timepix chips

Triple GEM

This innovative **gas detector** has been designed in the **ARDENT** framework within a collaboration between **CERN** and **INFN**.

It is a **triple GEM** detector read be a **4 naked Timepix** (no silicon sensor):

Gas flux Ar CO₂CF₄ or **Tissue equivalent gas**

In three years we found several applications for this type of detector: Radioactive waste, Micro dosimetry, Hadrontherapy, Radiotherapy, Radon Monitor ... but also Dark Matter Research !

Single particle detection

X-ray detection 6 keV from ⁵⁵Fe (1 sec frame)

The Timepix software PIXELMAN can recognize the cluster and measure in real-time its energy F.Murtas 19/2/2016 ICTR-PHE 2016 Geneva

Time and charge measurements

The Timepix Pixel

- Medipix (pulse counting)
- TOA (Time of arrival) **3D single track reconstruction**
- TOT (Charge surrogate measurement as a Wilkinson ADC) Charge and dE/dX
- TOA/TOT achieved with an on chip clock synchronised to all pixels (up to 100 Mhz, but 50 stable)

Improvements foreseen with TIMEPIX3 chips

3D particle track reconstruction

Changing the triple GEM voltage the gain of the detector is defined from ionization chamber up to 10⁴

Energy Calibration and TP correction

The temperature and the pressure measured inside the detector allow the realtime HV correction to obtain gain stability

Measurements on treatment Carbon beam at CNAO (Pavia)

332 MeV/A Carbon Ion Beam

33 different depths throughout water phantom

Each position given spot 8x10⁶ carbon ion treatment

Measurements at CNAO

The GEMPix has been inserted inside the water phantom

Comparison DDS and GEMPIX

Good agreement on beam time evolution between GEMPix and DDS

fondazione CNAO Centro Nazionale di Adroterapia Oncologica per il trattamento dei tumori

Comparison with GEANT4

33 measurements in depth to reconstruct the carbon ion Bragg Peak

TOT

Beam spot taken on Plateau, Bragg Peak and Tail Frame length : 20 ms and 100 ms (before and after the Bragg peak).

3D Carbon Ion Beam at CNAO

GEMPix for Radiotherapy POSTER 25

GEMPix detector (8cm² GEM detector read by 55x55µm pixels, 262 000 channels) - 2D measurements of energy released in IMRT (Policlinico Tor Vergata Roma)

F. Murtas , G. Claps, D. Falco CERN, INFN, PTV

An optimal agreement between GEMPix and gafchromic film is obtained Real-time measurements with GEMPix allows fast Quality Assurance procedure

Possible use in microbeam proton therapy for beam diagnostics F.Murtas 19/2/2016 ICTR-PHE 2016 Geneva

- ➤A 3D reconstruction of the Carbon Ion Beam in a water phantom has been performed at CNAO
- Work is underway to perform the measurements much
 faster (20 min) using better integration with the CNAO beam
 delivery system.
 - In this application it may be useful for Quality Assurance
- ➢ Possible use in micro beam diagnostics
- ➤A GEMPix based on the new Timepix3 ASIC will solve many of the dead time issues in tracking and beam monitoring.

Thanks for your attention

Backup slides

Single event Upset (SEU)

SEU

Liboratori Nazionali di Frazeta

- The study of radiation interactions at the scale of cellular structure
- The number of atoms in a 5
 mm path in gas is about the
 same as in a cellular
 nucleus
- Typical instrumentation is a single low pressure gas volume or silicon volume
- Gas pixel detectors offer the ability to examine each track individually

GEMPix applications

GEMPix Detector (8 cm² GEM detector read by $55x55\mu$ m pixels, 262 000 channels)

- Radioactive waste ⁵⁵Fe measurements at CERN (LEP, PS, SPS, LHC)
- 3D measurements of energy released in water phantom in Hadrontherapy treatment facility (CNAO Pavia)
- Gamma ray monitor for Radiotherapy dose measurement (Policlinico Tor Vergata, Rome)
- X-ray monitor in Inertial Fusion test facility (Petal, France)
- X-ray monitor in KSTAR Tokamak reactor (Korea)
- Proton tomography prototypes (Nikhef, The Netherlands)
- Dark matter prototype for directional dark matter searches with carbon nanotubes
- Dark matter prototype for NITEC: a Negative Ion Time Expansion Chamber for directional Dark Matter search

