

Fast calibration of the range of Carbon ions with in-beam PET of Boron-8 nuclei

Caterina Cuccagna^{1,2}

TERA foundation 19th February 2016

R.S. Augusto ^{3,4}, W. Kozlowska^{3,5}, P.G. Ortega ³, V. Vlachoudis³, U. Amaldi¹, A. Ferrari³,

1 Tera Foundation 2 University of Geneva 3 CERN 4 LMU Munich 5 Medical University of Vienna

The linacs of the TERA Foundation

CABOTO = CArbon BOoster for Therapy in Oncology designed by a CERN-TERA Collaboration

The linacs of the TERA Foundation

TERA

Fast active energy and intensity modulation: RF pulses and beam pulses

The linacs of the TERA Foundation

Fast active energy and intensity modulation: RF pulses and beam pulses

>FLUKA MONTECARLO

>FLUKA MONTECARLO

water target with a continous C-12 beam

$\tau = T_{1/2}/ln(2)$

water target with a continous C-12 beam

Proposal : a 2 s "range verification run"

0.6 s

19/02/2016

11

Results Analysis

Distribution of the decays along the beam direction with a PET system having overall efficiency = 2%

Caterina Cuccagna

In a range verification run of 2 seconds the position of the

Bragg peak can be determined with an error $\leq \pm 1 \text{ mm}$

Since the lifetime of B-8 is 1.12 s the technique can be applied also to cyclotrons and synchrotrons

In-beam PET measurements of the B-8 yield are needed

Thanks for your attention !

Coming together is a beginning keeping together is progress working together is success Henry Ford

[1] G. Shakirin et al., *Implementation and workflow for PET monitoring of therapeutic ion irradiation: a comparison of in-beam, in-room, and off-line techniques.*, Phys. Med. Biol. 2011 Mar 7;56(5):1281-98

[2] G. Sportelli et al., *First full-beam PET acquisitions in proton therapy with a modular dual-head dedicated system*, Phys. Med. Biol. 59 (2014) 43-60

[3] U. Amaldi, S. Braccini, P. Puggioni, *High Frequency Linacs for Hadrontherapy*, RAST 2 (2000) 111

[4] S. Verdú-Andrés, U. Amaldi ,Á. Faus-Golfe, CABOTO, a high-gradient linac for hadrontherapy, J. of Radiation Research, 2013, 54, i155–i161

[5] T.T. Bohlen, F. Cerutti, M.P.W. Chin, A. Fasso`, A. Ferrari, P.G. Ortega, A. Mairani, P.R. Sala, G. Smirnov, and V. Vlachoudis, *The FLUKA Code: Developments and Challenges for High Energy and Medical Applications* Nuclear Data Sheets 120, 211-214 (2014)

[6] A. Ferrari, P.R. Sala, A. Fasso`, and J. Ranft *FLUKA: a multi-particle transport code*, **CERN-2005-10 (2005), INFN/TC_05/11, SLAC-R-773**

[7] P. G. Ortega, T. T. Boehlen, F. Cerutti, M. P. W. Chin, A. Ferrari, A. Mairani, C. Mancini, P. R. Sala & V. Vlachoudis, *A dedicated tool for PET scanner simulations using FLUKA*, 3rd International Conference on Advancements in Nuclear Instrumentation Measurement, Methods and their Applications (ANIMMA), 2013.

Fraction of nuclei per primary proton (p) from RESNUCLEI card <u>Carbon (¹²C)</u> beam with a <u>water</u> tank T 400MeV/u

	Nuclei/p	Error(%)	T1/2 (s)	Decay	Branching(%)	Qdec(MeV)
0-15	1.59E-01	0.050367	122.24	B+	99.9003	1.73217
0-14	4.48E-03	0.2336	70.606	B+	99.878	4.12204
0-13	2.72E-04	1.42	0.00858	B+P	100	14.80447
N-13	1.60E-02	0.1783	597.9	B+	99.8036	1.19847
N-12	1.51E-03	0.6207	0.011	B+	100	16.31607
C-11	1.14E-01	0.059217	1221.84	B+	99.7669	0.96041
C-10	1.22E-02	0.2792	19.29	B+	99.9671	2.62607
C-9	1.68E-03	0.3909	0.1265	B+	3.60998	15.47248
C-9	1.68E-03	0.3909	0.1265	B+A	34.7898	13.78517
C-9	1.68E-03	0.3909	0.1265	B+P	61.5997	15.65833
B-8	9.34E-03	0.2524	0.77	B+	99.552	16.95791
F-17	3.58E-04	1.184	64.49	B+	99.854	1.73847
Ne-10	1.00E-06	28.61	0.1092	B+P	100	12.92648
F-18	9.33E-04	0.7435	6586.2	B+	96.73	0.63393
Ne-18	5.55E-05	3.286	1.672	B+	99.9687	3.42251
Ne-19	1.03E-04	2.329	17.22	B+	99.8999	2.2175
Na-11	5.68E-06	8.929	0.4479	B+	79.9988	12.87054
Na-11	5.68E-06	8.929	0.4479	B+A	19.9997	8.14069
Mg-12	3.68E-07	47.38	0.0908	B+P	100	7.49564
Na-21	1.48E-05	6.337	22.49	B+	99.9019	2.52514
Mg-12	9.47E-07	26.12	0.122	B+	67.3963	12.07615
Mg-12	9.47E-07	26.12	0.122	B+P	32.5982	9.64448
Na-22	4.06E-05	4.77	82135000	B+	90.382	1.8212
Mg-12	6.05E-06	12.28	3.8755	B+	99.9183	3.75958
Mg-23	2.28E-05	4.185	11.317	B+	99.9215	3.03459