#### UNIVERSITY OF BERGEN

Department of physics and technology

# Measurements and simulations of in-phantom neutron dose from a proton pencil beam

**Kristian S. Ytre-Hauge**<sup>1\*</sup>, Arild Velure<sup>1</sup>, Camilla H. Stokkevåg<sup>2</sup>, Odd Harald Odland<sup>2</sup>, Dieter Röhrich<sup>1</sup>

1 Department of Physics and Technology, University of Bergen, Norway2 Department of Medical Physics and Oncology, Haukeland University Hospital, Bergen, Norway.

\*Corresponding author: kristian.ytre-hauge@uib.no



### Introduction

- In proton therapy, neutrons produced in collimators or in the patient body will contribute to dose to the patient
- This neutron dose is mainly associated with a potential increased risk of radiation induced second cancer after treatment
- Assessments of in-phantom neutron dose has predominantly been done using passive detectors

We present the first application of a novel compact and active detector for measurements of in-phantom neutron dose from proton therapy



#### Methods The SRAM detector

- The detector was developed at the University of Bergen and is based on registration of Single Event Upsets (SEUs) in Static Random Access Memories (SRAMs)
- The SRAM detector counts SEUs (bit flips) caused by inelastic collisions between neutrons and nuclei in the SRAM chip
- The neutron fluence is proportional to the number of bit flips detected







#### Methods The SRAM detector

 The SRAM detector was characterized through irradiation experiments at several European research facilities





Data from: KS. Ytre-Hauge et al., Nucl.Instrum.Methods A 804 (2015) 64.

#### Methods The SRAM detector

- The SRAM detector was characterized through irradiation experiments at several European research facilities
- Steep increase in neutron sensitivity above the (assumed) detection threshold of 3 MeV





Data from: KS. Ytre-Hauge et al., Nucl.Instrum.Methods A 804 (2015) 64.

#### Methods Experimental setup

- Measurements were performed at The Svedberg Laboratory (TSL, Uppsala)
- 178 MeV proton pencil beam (uncollimated) with FWHM
  1.33 cm
- Monte Carlo simulations were performed with the FLUKA code for comparison







#### **Results** Neutron fluence

- Neutron fluence at Bragg peak depth decreases steeply with lateral distance from beam axis
- Measurements indicate same trend as simulations, but consistently higher values





1 treatment Gray =  $5.65 \times 10^9$  protons

#### **Results** Neutron fluence

- Neutron fluence at Bragg peak depth decreases steeply with lateral distance from beam axis
- Measurements indicate same trend as simulations, but consistently higher values
- Measurements at 3.0 cm indicate response to charged particles





1 treatment Gray = 5.65 x 10<sup>9</sup> protons

- Neutron dose, H\*(10), at Bragg peak depth decreases steeply with lateral distance from beam axis
- Measurements indicate same trend as simulations, but consistently higher values





- Neutron dose, H\*(10), at Bragg peak depth decreases steeply with lateral distance from beam axis
- Measurements indicate same trend as simulations, but consistently higher values





1 treatment Gray =  $5.65 \times 10^9$  protons

- Neutron dose, H\*(10), at Bragg peak depth decreases steeply with lateral distance from beam axis
- Measurements indicate same trend as simulations, but consistently higher values
- Results are comparable to findings with passive detectors (CR-39)





\*U. Schneider, et al., Int. J. Radiat. Oncol. Biol. Phys. 53 (2002) 244.

1 treatment Gray = 5.65 x 10<sup>9</sup> protons

• Relatively stable neutron dose as a function of depth





- Relatively stable neutron dose as a function of depth
- Possible response to charged particles prior to Bragg peak close to the beam axis





- Relatively stable neutron dose as a function of depth
- Possible response to charged particles prior to Bragg peak close to the beam axis
- Measurements indicate same trend as simulations, but consistently higher values





- Monte Carlo simulations indicated that between 84% and 90% (depending on position) of the neutron dose was due to neutrons with energy above 3 MeV
- $\rightarrow$  the detector covers the most important energy region





#### **Results** Experimental uncertainties

- High measured neutron doses may be due to possible defocus of beam during experiment
- GafChromic film irradiation and high detector response at 3 cm off-axis supports this hypothesis





#### **Results** Experimental uncertainties

- High measured neutron doses may be due to possible defocus of beam during experiment
- GafChromic film irradiation and high detector response at 3 cm off-axis supports this hypothesis





#### Conclusions

 A novel neutron detector based on radiation effects in SRAMs was used for measurements of neutron doses from a 178 MeV proton pencil beam



### Conclusions

- A novel neutron detector based on radiation effects in SRAMs was used for measurements of neutron doses from a 178 MeV proton pencil beam
- Measurements indicate a steep decrease in neutron dose with lateral distance: 1.2 mSv/Gy at 5.2 cm decreasing to 0.2 mSv/Gy at 13.7 cm distance from beam axis



uib no

### Conclusions

- A novel neutron detector based on radiation effects in SRAMs was used for measurements of neutron doses from a 178 MeV proton pencil beam
- Measurements indicate a steep decrease in neutron dose with lateral distance: 1.2 mSv/Gy at 5.2 cm decreasing to 0.2 mSv/Gy at 13.7 cm distance from beam axis
- This work shows the potential for using the SRAM detector in particle therapy as an alternative to passive detectors



## Thank you

Iffil

Bergen particle therapy center