

Radiolabeled Acridine Orange (AO) Derivatives as DNA-Targeted Probes for Auger Therapy

ANTÓNIO PAULO

Centro de Ciências e Tecnologias Nucleares, IST, Universidade de Lisboa Estrada Nacional, 10, 2686-953, Sacavém, Portugal

(apaulo@ctn.tecnico.ulisboa.pt)

ICTR-PHE 2016

Geneva, 16th February 2016

Technetium-99m

- The most important SPECT Radionuclide
 - 85% Diagnostic Nuclear Medicine
 - ^{99m}Tc: γ 140 Kev; T_{1/2}= 6 h
 - ⁹⁹Mo/^{99m}Tc Generator
 - Variety of kits available

OSTEOCIS

What about Auger therapy ?

Auger emitter : 5e-/decay; 33-226 eV

e- Auger : short pathway but high LET!

Biological effects (e.g. induction of cell death) are highly dependent on subcellular localization and proximity towards DNA

Multifunctional Compounds for Cell-Specific DNA Targeting

A. Paulo et al., *Org Biomol Chem* **2010**, *8*, 4104 A. Paulo et al., *J Biol Inorg Chem* **2011**, *16*, 1141

Re(I)/^{99m}**Tc(I)** Complexes with AO and BBN analogues

Re(I) Complexes: Cell Uptake

Fluorescence confocal microscopy pictures of PC-3 cells (1,5 x 10^{-5} M).

Influence of the Intercalator (AO)

Comparison with ¹²⁵I-Congeners

5 e-/decay

Average energy (eV)	Yield/decay
15300	0,0126
17830	0,0047
42,9	0,0193
2050	0,0868
2320	0,0137
2660	0,0012
116	0,747
226	1,1
33,4	1,98

24 e-/decay

Average energy (eV)	Yield/decay
22400	0,138
26400	0,059
30200	0,0065
219	0,264
3050	1,25
3670	0,34
4340	0,0211
127	1,44
461	3,28
29,9	3,51
32,4	10,9

Auger spectrum data taken from Roger W. Howell, Medical Physics 1992

Molecular Docking

Target DNA sequence: ds(ACGTACGT)₂

¹²⁵I-5C: 10.49 Å ^{99m}Tc-3C: 10.80 Å

Nanodosimetry

- DNA model = rigid rod
- MCNP6 Monte Carlo simulations; Simulated material = water
- Output of MC simulations= electron flux (1/cm²) and dose (Gy)
- DSB probability linearly proportional to the segment dose

DNA damage: Plasmid Studies

Gel electrophoresis

(Cleavage of supercoiled ϕ X174 DNA by ¹²⁵I-5C (initial activity), after incubation at different intervals of time at 4°C in Tris.HCl buffer (pH 7.4) in the presence or absence of DMSO (0.2M))

DNA damage: Plasmid Studies

(Cleavage of supercoiled ϕ X174 DNA by ^{99m}Tc-3c, after 24h of incubation at 4°C in Tris.HCl buffer (pH 7.4) in the presence or absence of DMSO (0.2M))

DNA damage: Plasmid Studies

1.

DSB/decay

0,35

Compound	- DMSO	+ DMSO
^{99m} Tc-3C	0.034	0.011
¹²⁵ I-5C	0.050	0.040
	0.030	0.040

DNA damage: Cell Studies

Biological endpoint: Nuclear foci

W. M. Bonner et al., Nature Reviews Cancer (2008), 8, 957-967

DNA damage: γ-H2AX assay

<u>Control:</u>

Average number of foci/nucleus= 1.12 ± 1.05

PC-3 cells incubated with ¹²⁵I-C3: Average number of foci/nucleus= 26.13 ± 4.4

(8 uCi/2000 cells, 24 h)

DNA damage: γ-H2AX assay

Control:

Av. number of foci/nucleus=

 $\textbf{4.49} \pm \textbf{2.12}$

PC-3 cells incubated with ^{99m}Tc-C5:

Av. number of foci/nucleus=

 $\textbf{19.4} \pm \textbf{4.2}$

(50 uCi/2000 cells, 24 h)

Conclusions

• Combining a DNA intercalator with a GPCR-targeting peptide can afford cell-specific targeting of nuclear DNA with ^{99m}Tc;

- Our results encourage the use of this approach (i.e. DNA intercalator combined with a target-specific vector) for other Auger emitters (e.g. ¹¹¹In, ¹⁵⁵Tb, ¹⁶¹Tb, etc.);
- If placed in close proximity to DNA, ^{99m}Tc can induce DNA damage with an extent relatively similar to that induced by ¹²⁵I (either *in vitro* or *in vitro*);
- DNA damage due to indirect effects is more relevant for 99m Tc than 125 I, which certainly reflects the higher energy of the γ -photons emitted by 99m Tc.

Acknowledgements

Edgar Pereira, Letícia do Quental, Maria Cristina Oliveira, Paula D. Raposinho, Filipa Mendes, Ana Belchior, Salvatore di Maria, Isabel Santos, Pedro Vaz

Isabel Correia

João Lavrado

Fundação para a Ciência e a Tecnologia MINISTÉRIO DA CIÊNCIA, INOVAÇÃO E DO ENSINO SUPERIOR

Projects: EXCL/QEQ-MED/0233/2012 UID/Multi/04349/2013