
Improving the Outcome of Lung Cancer with Advanced Technology: Photon, Proton and Carbon

> Hak Choy, MD UT Southwestern Dallas, Texas

1895 – A New Kind of Ray

Wilhelm Röntgen

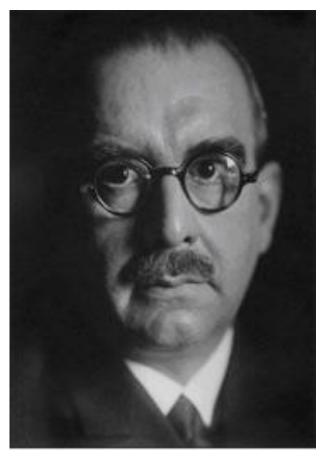
EINE NEUE ART

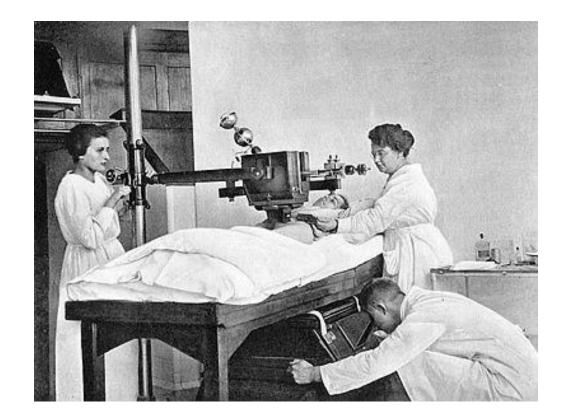
STRAHLEN.

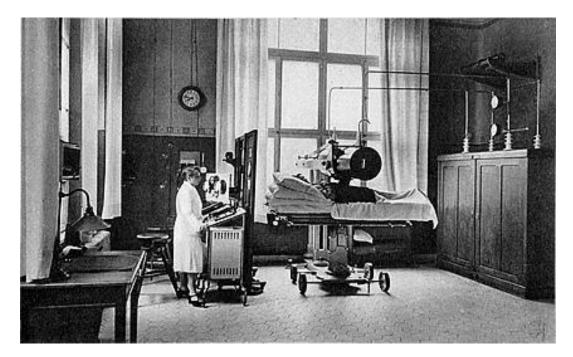
¥on

DE W. BÖNTGEN, 8. 0. PROFESSOR AN DER R. UNIVERSITÄT WÜRZBURG

WÜRZBURG. VERLAG UND DRUCK DER STAHELSCHEN K. MOF- UND UNIVERSITÄTS-BUCH- UND KUNNTHANDLUNG. Rode 1895.


1908 - Stockholm Method of Hypofractionation Using Brachytherapy


Gösta Forsell


1914 – Erlanger Method of Hypofractionation using Teletherapy

Hermann Wintz

1920 - Cervix Cancer is "Cured" by Hypofractionated Brachy- and Teletherapy

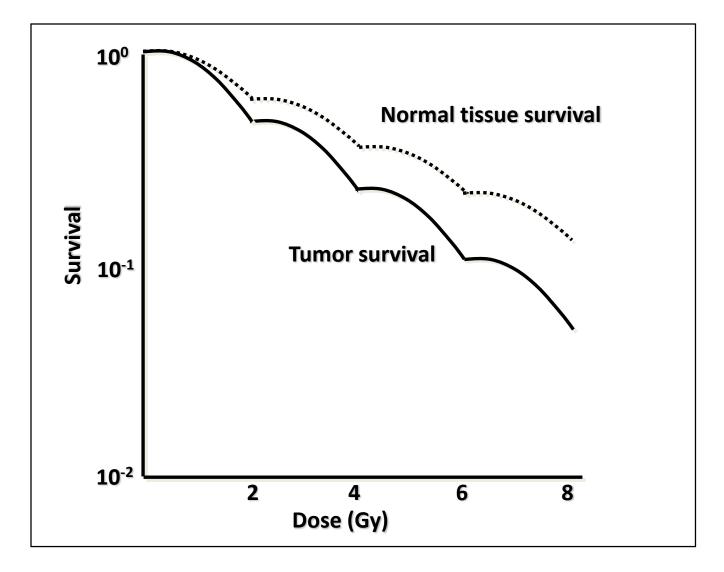
Gynecological specialist congress - a participant shouted,

"Cancer is defeated ..."

Late 1920's – The Sky Fell

LATE radiation toxicity: ulceration, denervation, devasculization, stenosis, fibrosis, devitalization

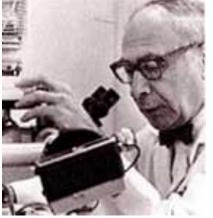
Why did the sky fall?


- Technology problems
 - Very low energy beams (most dose into the skin)
 - Crude guidance
 - Poor understanding of radiation interactions (unable to represent dose


Why did the sky fall?

- Technology problems
 - Very low energy beams (most dose into the skin)
 - Crude guidance
 - Poor understanding of radiation interactions (unable to represent dose
- Biology problems
 - As with tumor, normal tissues poorly tolerant of radiation therapy
- Clinical problems
 - Crude understanding of tumor location
 - Normal tissues extensively irradiated

Traditional Radiobiology


US Pioneers Champion Protracted Fractionation

Gilbert Fletcher

Juan Del Regato

Henry Kaplan

Franz Buschke

Isodore Lampe

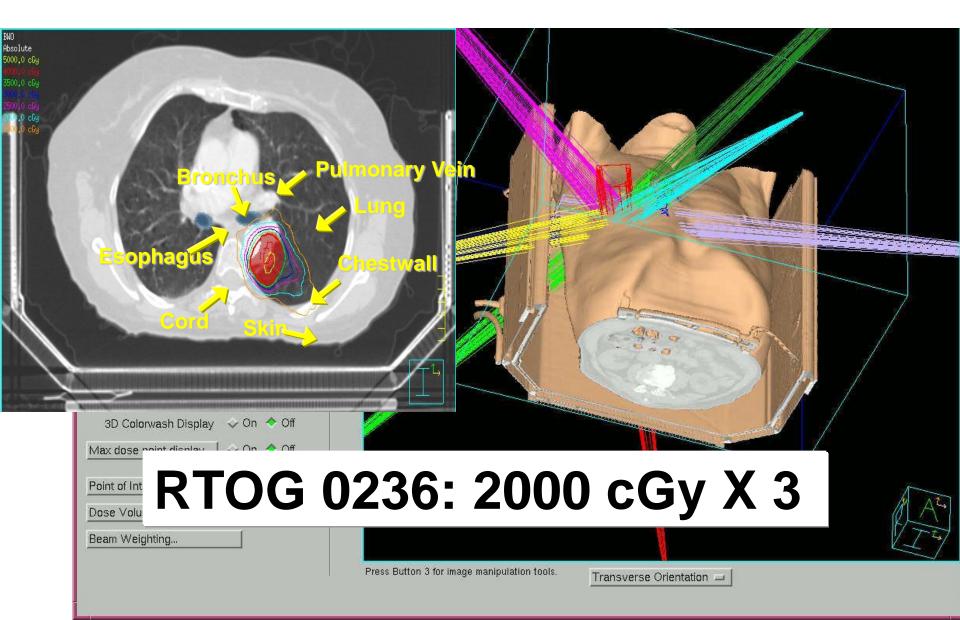
Fletcher, Kaplan, Lampe, Del Regado, and Buschke's Toolbox

Mostly 1-D and 2-D teletherapy

Tools that Fletcher Didn't Have

- Stereotactic targeting
- 3-D conformal avoidance
- IMRT
- 4-D motion assessment
- Motion control
- Image guidance

-ALL FACILITATING STEREOTACTIC ABLATIVE (SABR) AND IMAGE-GUIDED HYPOFRACTIONATED RADIOTHERAPY


The Advancement of Radiation Therapy Technology

Early Stage NSCLC: SBRT

LAStage NSCLC: IGRT

Advanced Stage NSCLC: SBRT

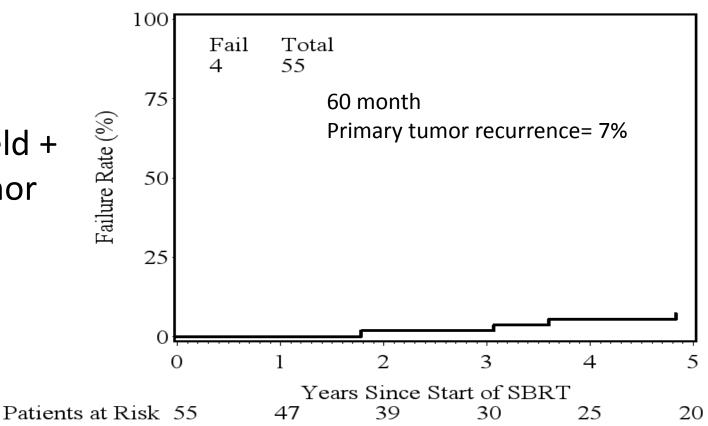
Stereotactic Body Radiation Therapy

RTOG 0236: Local Control #/1 ++ Local Control (%) 36 month local control = 98% (CI: 84-100%) 1 failure within PTV, 0 within 1 cm of PTV Fail: Total: \mathbf{O}

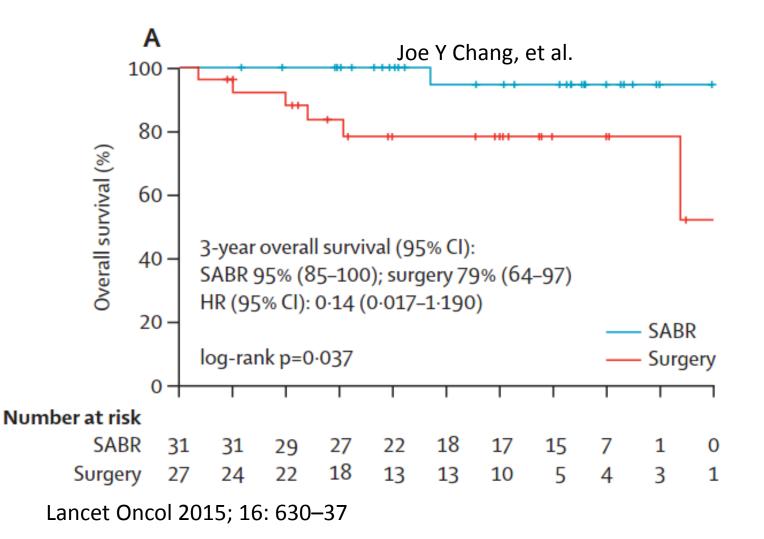
Months after Start of SBRT

Patients at Risk

Timmerman: ASTRO 2009, 11/2/2009 Chicago

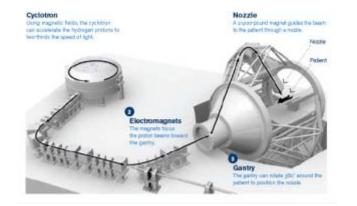


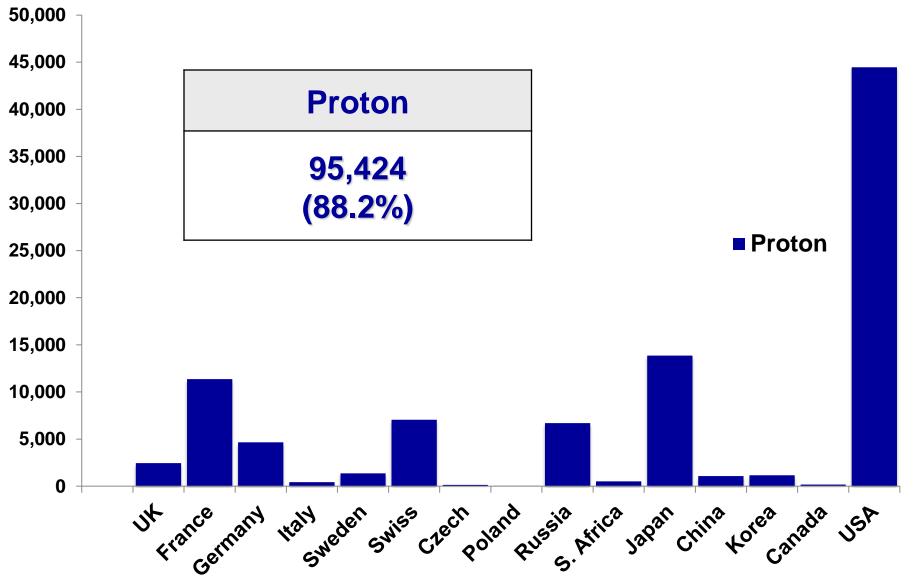
Online article and related content current as of July 15, 2010.


RTOG 0236 Primary (In-field + Marginal) Tumor Recurrence

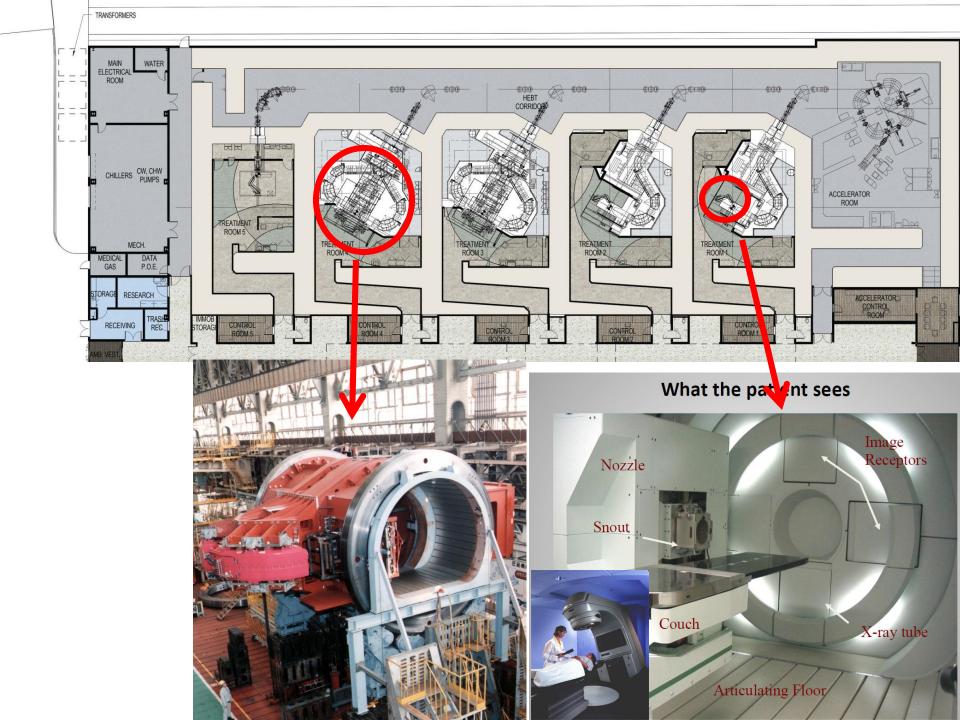
Stereotactic Body Radiation Therapy for Inoperable Early Stage Lung Cancer

Robert Timmerman, MD; Rebecca Paulus, BS; James Galvin, PhD; Jeffrey Michalski, MD; William Straube, PhD; Jeffrey Bradley, MD; Achilles Fakiris, MD; Andrea Bezjak, MD; Gregory Videtic, MD;David Johnstone, MD; Jack Fowler, PhD; Elizabeth Gore, MD; Hak Choy, MD


Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-small-cell lung cancer: a pooled analysis of two randomized trials

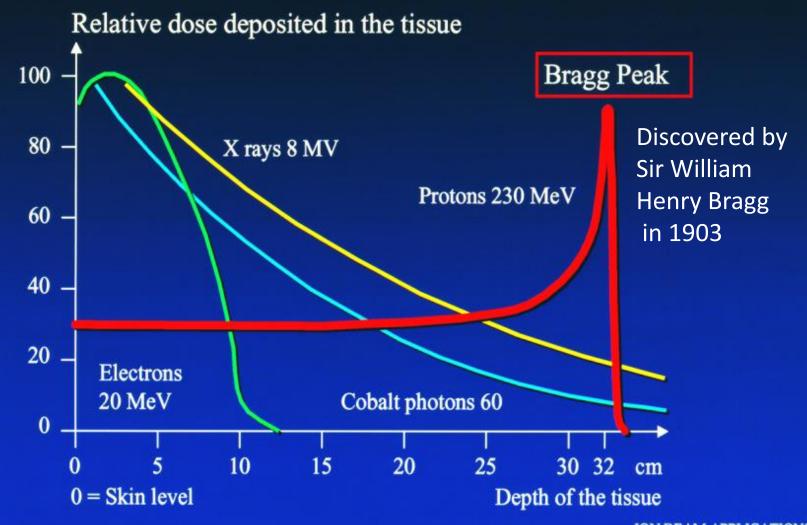

Radiation Oncology – Beyond Photon

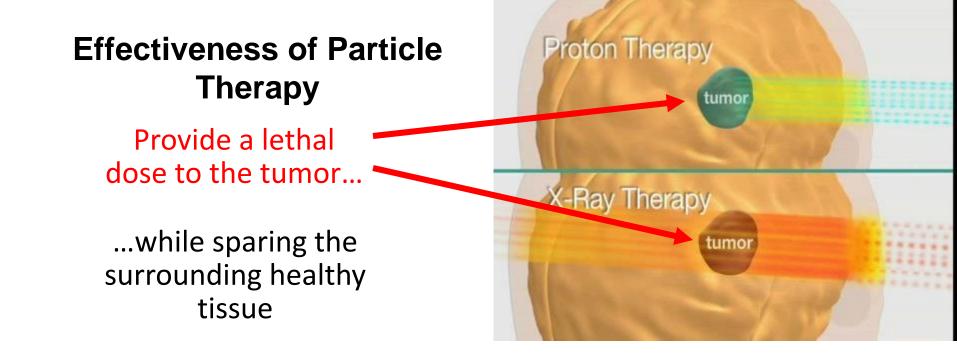
- Conventional Therapy
 - Standard Care
- Proton therapy
 - The Recent Technology

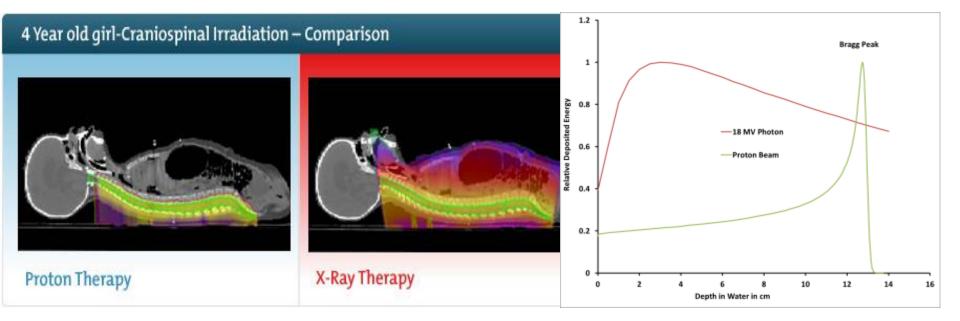


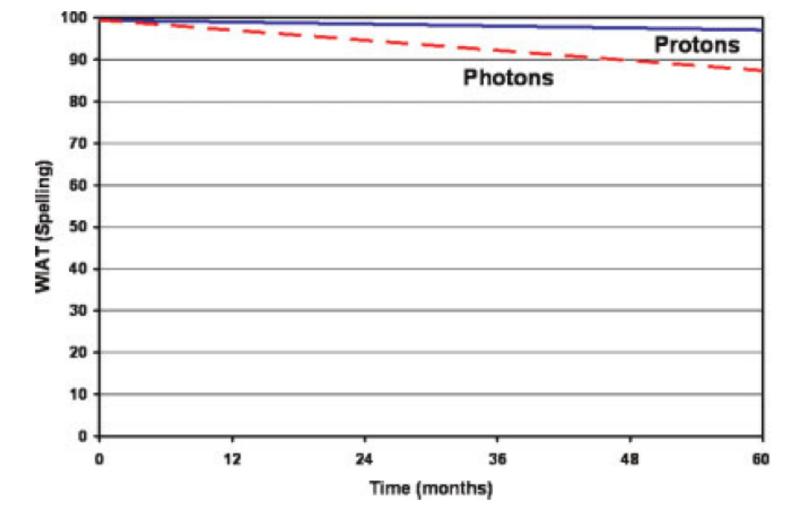
Number of patients treated with Protons in the world

Proton Therapy: What is it ? What's the big deal about it ? TAEL

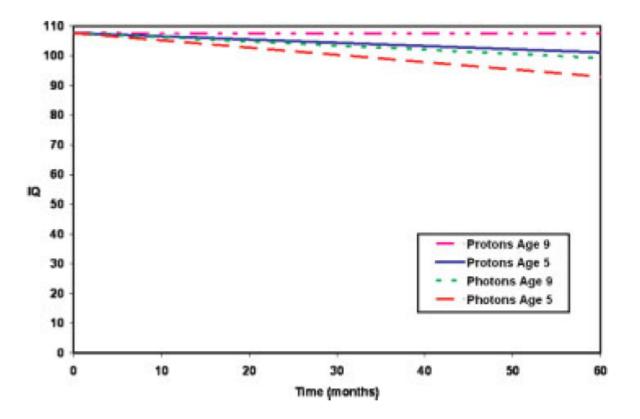

It's a Big machine ! 13 m diameter 190 tons SAD ≥ 2.7 m

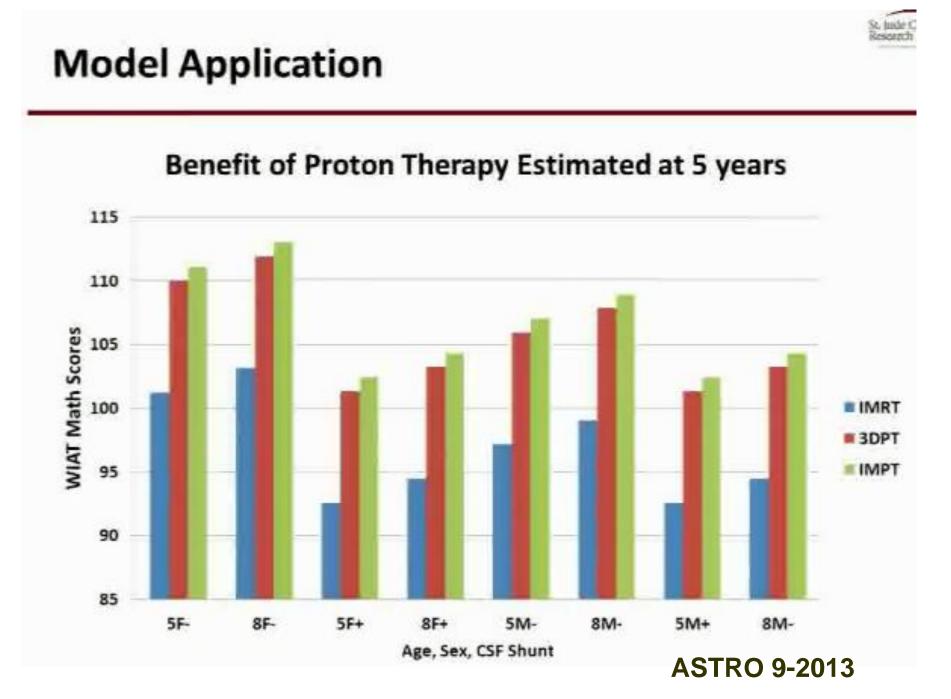

How Proton is different than X-rays/Photon ?


Mostly in the Physical property Not much difference in Biology!


Dose Distribution Advantage

ION BEAM APPLICATIONS




Estimated WIAT spelling score for patients with optic pathway Fig. 3. glioma planned for treatment with scanning proton beam (blue line) and conformal photon radiation therapy (red/dashed line). [Color figure can be viewed in the online issue, which is available at www.interscience. wiley.com.]

Pediatr Blood Cancer 2008;51:110–117

Fig. 5. Estimated IQ for patients ages 5 and 9 with craniopharyngioma planned for treatment with scanning proton beam therapy and conformal photon radiation therapy. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

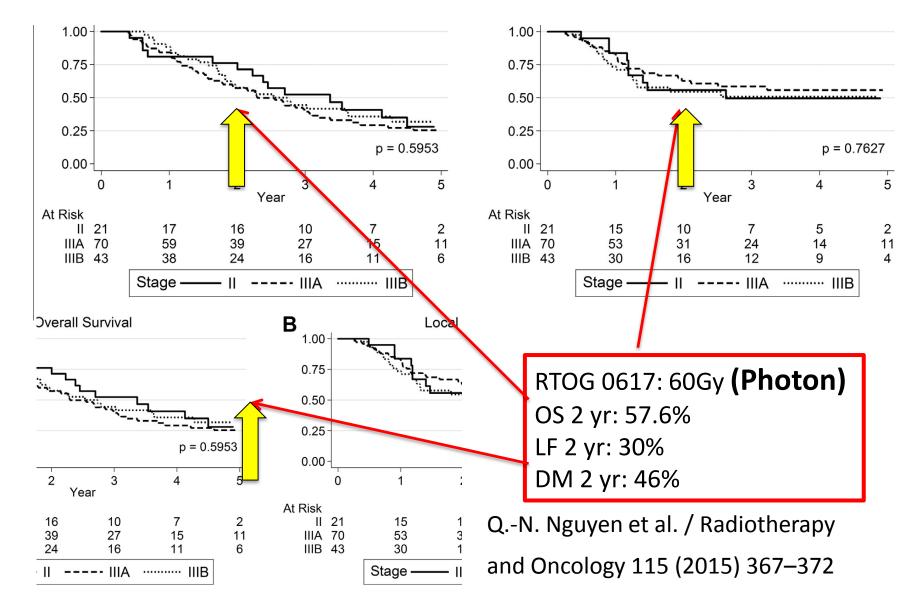
Pediatr Blood Cancer 2008;51:110–117

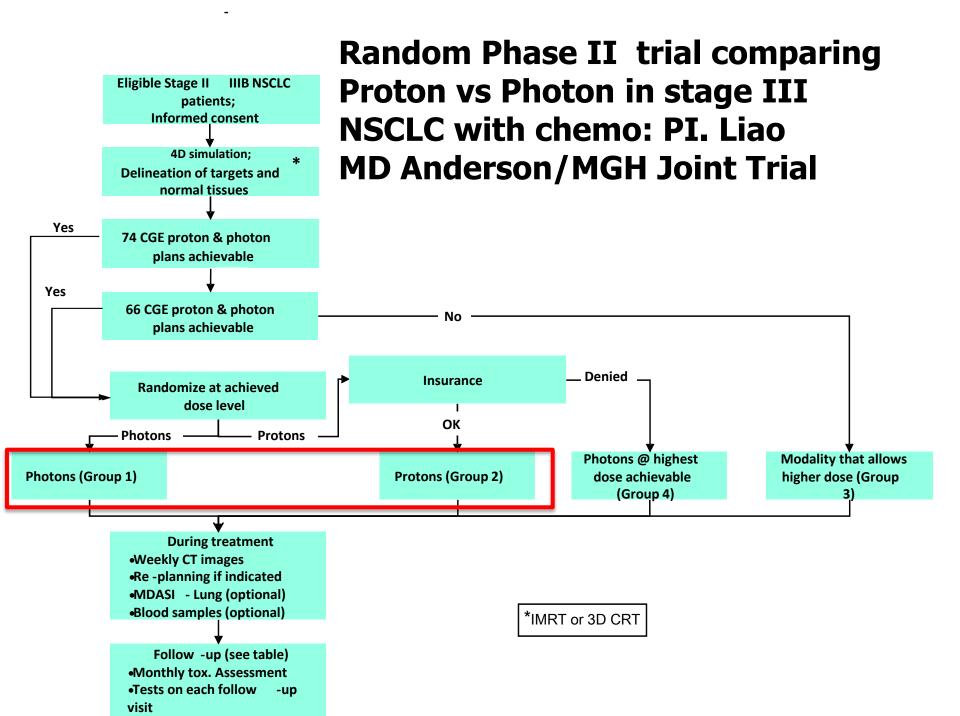
General Hypothesis of using Proton Beam for Lung Cancer

1. Proton therapy can significantly reduced the volume of lung/heart exposed to radiation and sparing of normal tissues compared to photon therapy: Potential reduced Toxicities and perhaps better survival.

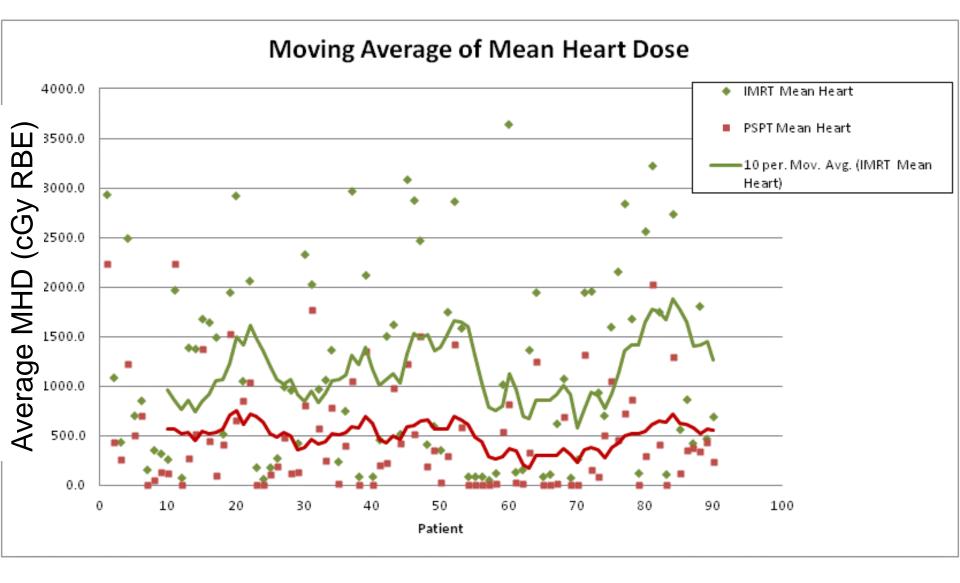
 Higher dose conformity of dose distributions can be exploited to escalate tumor dose:
 Possible better tumor control.

Long-term outcomes after proton therapy, with concurrent chemotherapy, for stage II–III inoperable non-small cell lung cancer


Type of Toxicity	No. of patients experiencing toxicity (%)				
	Grade 0	Grade 1	Grade 2	Grade 3	Grade 4
Dermatitis	74 (55)	33 (25)	19 (14)	8 (6)	0
60-66 Gy(RBE)	14 (61)	5 (22)	2 (9)	2 (9)	0
70-72 Gy(RBE)	19 (56)	9 (26)	4 (12)	2 (6)	0
74 Gy(RBE)	41 (52)	19 (25)	13 (17)	4 (5)	0
Esophagitis	69 (51)	25 (19)	33 (25)	6 (4)	1 (1)†
60-66 Gy(RBE)	10 (43)	3 (13)	8 (35)	2 (9)	0
70-72 Gy(RBE)	24 (71)	6 (18)	3 (9)	1 (3)	0
74 Gy(RBE)	35 (45)	16 (21)	22 (29)	3 (4)	1 (1)
Radiation pneumonitis	68 (51)	35 (26)	29 (22)	2 (1.5)	0
60-66 Gy(RBE)	14 (61)	5 (22)	4 (17)	0	0
70-72 Gy(RBE)	20 (6)	9 (26)	5 (15)	0	0
74 Gy(RBE)	34 (44)	21 (27)	20 (26)	2 (3)	0


Q.-N. Nguyen et al. / Radiotherapy and Oncology 115 (2015) 367–372

True aided Pickas's succe test


 Proton therapy can significantly reduced the volume of lung/heart exposed to radiation and sparing of normal tissues compared to photon therapy: Potential reduced Toxicities → improve survival ?"

Long-term outcomes after proton therapy, with concurrent chemotherapy, for stage II–III inoperable non-small cell lung cancer

IMRT vs. PSPT - Latest Results

Personal Communication From Dr Liao 2015

How can we demonstrate the Proton Radiotherapy is Superior to Intensity Modulated Radiotherapy (IMRT) ?

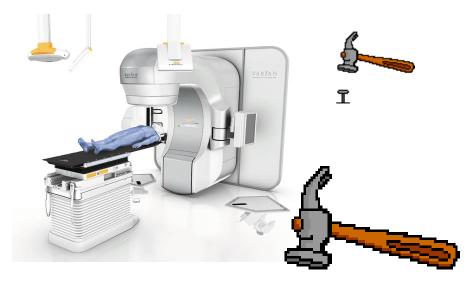
- Understanding the impact on biologicallyeffective proton dose distributions delivered to the patient
- linear energy transfer (LET) guided plan optimization with intensity modulated proton therapy (IMPT)
- 3. Minimize the uncertainties: Range uncertainty, intra-fractional motion, inter-fractional anatomic changes
- 4. Randomized Phase III trials in certain Tumor

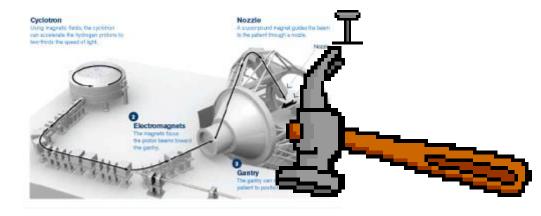
RTOG 1308

Phase III Randomized Trial Comparing Overall Survival after Photon versus Proton Radiochemotherapy for Inoperable Stage II-IIIB NSCLC

SCHEMA

Stage Arm 1: Photon 1. dose—Higher 2. IIIA achievable dose 3. IIIB between 60-70 Gy, R once daily plus S GTV Volume A platinum-based **T** 1. ≤ 130 cc N doublet **R** 2. > 130 cc chemotherapy* D Α Ο Т Histology M Arm 2: Proton 1. Squamous dose—Higher F Non-2. Z achievable dose Y Squamous E between 60-70 Gy (RBE), once daily Neoadjuvant plus platinum-Chemo based doublet 1. No chemotherapy* 2. Yes


Both Arms:


Consolidation chemotherapy x 2 is allowed*

Target Accrual: 560, Accrual as of 1/15: 48

Radiation Oncology – Beyound Photon and Proton

- Conventional Therapy
 - Standard Care
- Proton therapy
 - The Recent Technology



- Heavy Ion Therapy
 - The Most Advanced Technology

Number of patients treated with Protons and C-ions in the world

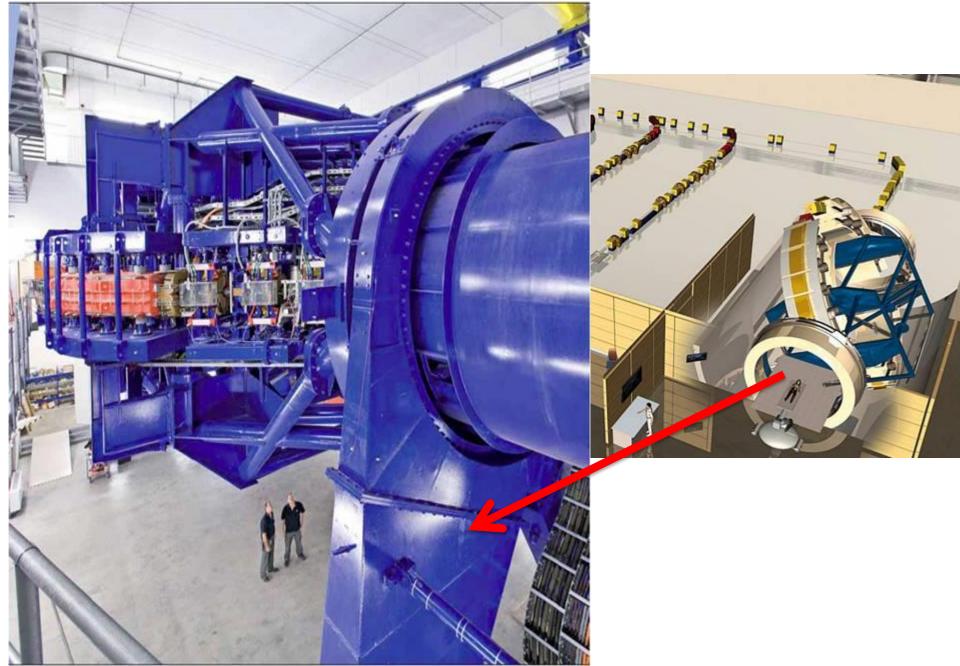
50,000

World Wide Heavy Ion Therapy Centers

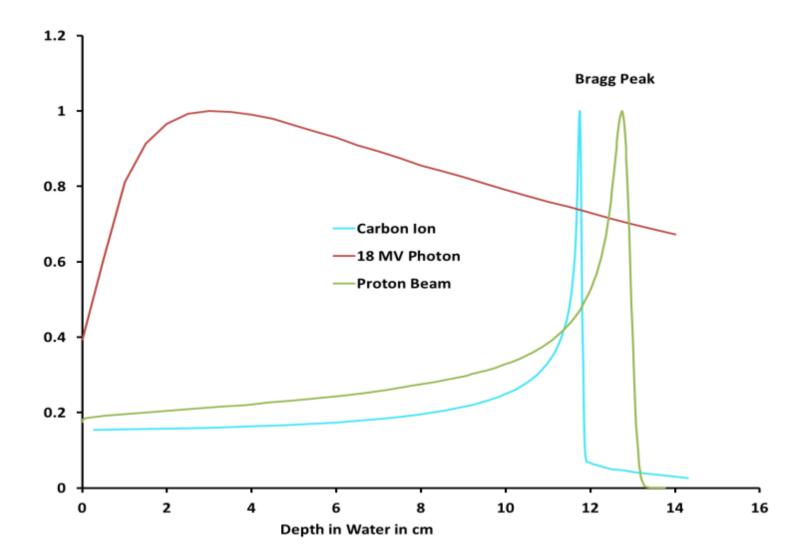
Operational (11) 🛆

Austria MedAustron, Wiener Neustadt China Fudan Univ CC, Shanghai China IMP-CAS, Lanzhou Germany HIT, Heidelberg Germany MIT, Marburg Italy CNAO, Pavia Japan HIMAC, Chiba Japan HIBMC,Hyogo Japan GHMC, Gunma Japan SAGA-HIMAT, Tosu Japan i-ROCK, Kanagawa

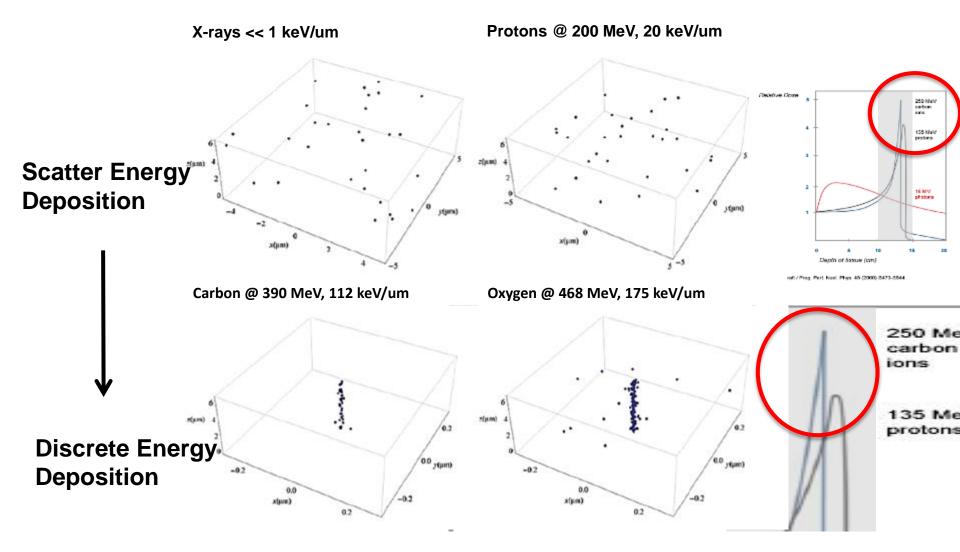
Under Construction(5)

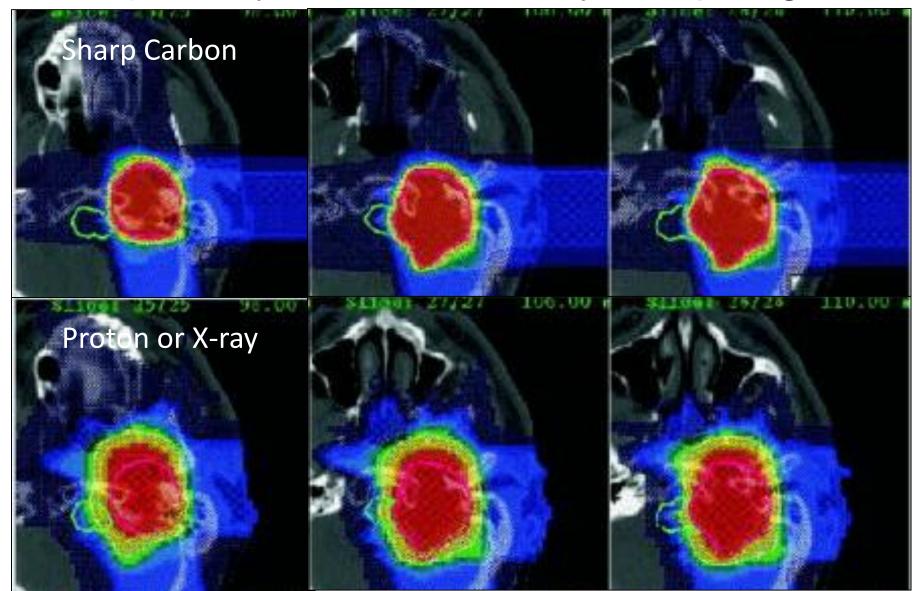

China HITFiL, Lanzhou China Another Center, Lanzhou Japan, Osaka Japan, Yamagata South Korea KHIMA, Busan

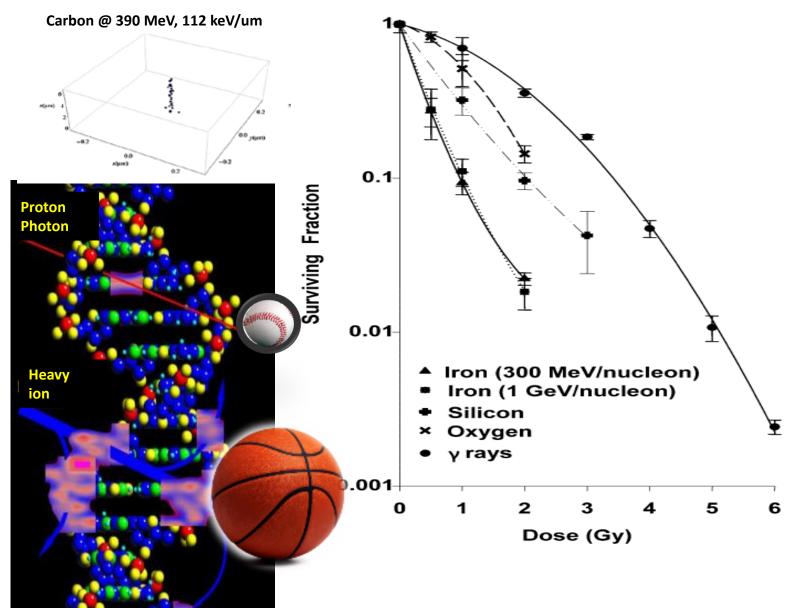
Advanced Planning(4)

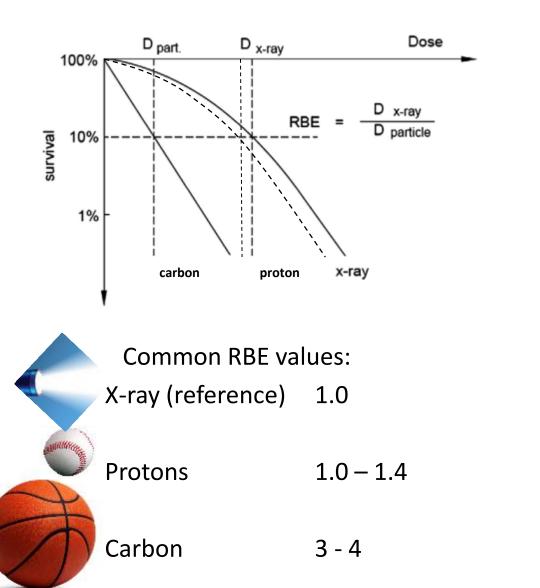

Japan Okinawa Taiwan, CMU Taiwan, Taichung Univ South Korea, Yonsei University

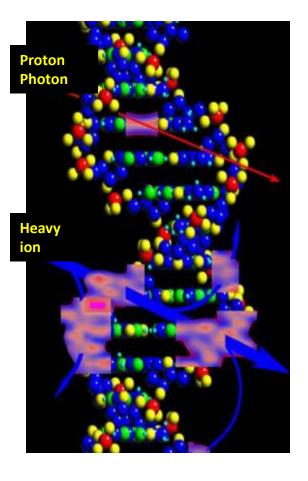
Total : 20


It's the Biggest Radiation Therapy Machine

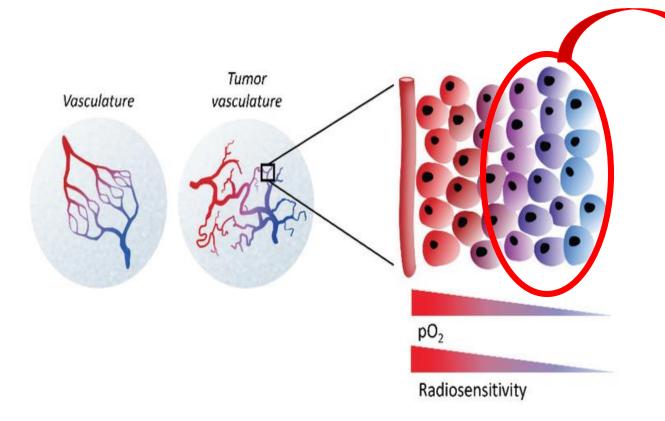

Perhaps, we can do better with Heavy Ion Therapy (Carbon) !


• Energy deposition patterns become more discrete

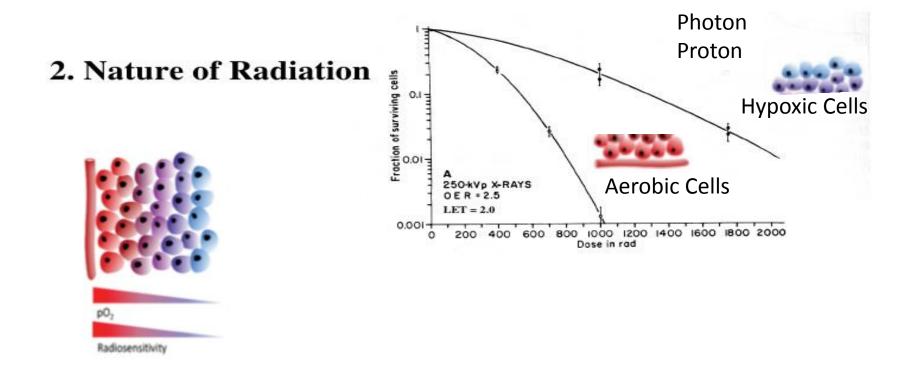

3) Heavy lons – have very sharp edges



Discrete patterns of energy deposition result in clustered DNA damage and greater cell killing



Enhanced cell killing described by Relative Biological Effectiveness


Heavy charged particles can overcome radioresistance due to hypoxia

Hypoxic tumors show:

- Increased aggressiveness
- Resistance to therapy
- Increased metastasis
- Poor patient prognosis

Heavy charged particles can overcome radioresistance due to hypoxia

World Wide Heavy Ion Therapy Centers

USA Berkeley Nat. Lab, last patient treated1993

Operational (11) 🛆

Austria MedAustron, Wiener Neustadt China Fudan Univ CC, Shanghai China IMP-CAS, Lanzhou Germany HIT, Heidelberg Germany MIT, Marburg Italy CNAO, Pavia Japan HIMAC, Chiba Japan HIBMC,Hyogo Japan GHMC, Gunma Japan SAGA-HIMAT, Tosu Japan i-ROCK, Kanagawa

Under Construction(5)

China HITFiL, Lanzhou China Another Center, Lanzhou Japan, Osaka Japan, Yamagata South Korea KHIMA, Busan

Advanced Planning(4)

Japan Okinawa Taiwan, CMU Taiwan, Taichung Univ South Korea, Yonsei University

Total : 20

Ion Beam Initial clinical Trials at LBNL-UCSF, 1975–1992

Prof. Joseph Castro, UC San Francisco conducted the LBNL clinical trials in1975. Almost 3000 patients were treated until 1992.

Prof. T. Phillips

Prof. J. Quibby

Prof. G. Chen Dr. E. Blakely

Heavy Ion Therapy at LBNL(1975~1992)

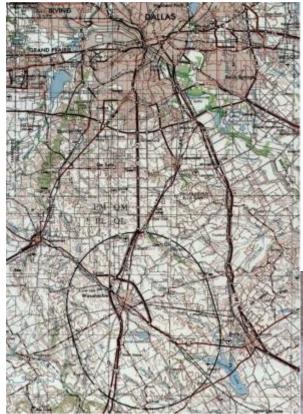
- Heavier ions were the most effective in : salivary, bone & soft tissue, and bile duct tumors. slow growing tumors, hypoxic tumors.
- Optimal ion species for clinical use :
 - somewhere between lithium and oxygen, and <u>carbon ions might be the best.</u>

																	2 He 4.0026
4 Be 9.0122												5 B 10.811	6 C	nitrogiin 7 N 14.007	8 0 15,999	fluorine 9 F 18.998	10 10 Ne 20.180
12 Mg 24.305			-				100					13 AI 26.962	14 Si 28.086	15 P 30.974	16 S 32.065	17 CI 35.453	18 Ar 39.948
20 Ca 40.078		21 Sc 44.966	22 Ti 47.867	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe	27 Co	28 Ni 58.093	29 Cu 63.540	30 Zn	31 Ga	32 Ge 72.61	33 As 74.922	34 Se 78.96	35 Br 79.904	83.80
38 Sr 87.62 barium		39 Y 88.900 Iutetium	40 Zr 91.224 hotnourn	41 Nb 92.906 tantakm	42 Mo 95.54 tungsten	43 Tc	44 Ru 101.07 osmium	45 Rh 102.91 Holum	46 Pd 106.42 platinum	47 Ag 107.87 9083	48 Cd 112.41 Everoury	49 In 114.82 mailium	50 Sn 118.71 kiad	51 Sb 121.76 bismuth	52 Te 127.60 polonium	53 126.90 astatine	54 Xe 131.29 radon 86
	4 Be 20122 12 Mg 24 305 coldum 20 Ca 40.078 strondum 38 Sr 87.62	4 Be 20122 12 Mg 24 305 Calesum 20 Ca 40.078 stroetdum 38 Sr 87.62 barlum	4 Be 20122 12 Mg 24.305 coldum 20 Ca 40.078 8condum 21 Scc 44.966 9tftium 38 Sr 87,62 68.906 barlur 40.066 9tftium 39 Sr 87,62 68.906 barlur 10 10 10 10 10 10 10 10 10 10	4 Be 20122 12 Mg 24 305 coldum 20 Ca 40.078 strontum 38 Sr 87.52 57.55.55 57.5	4 Be 20122 2305 Mgg scandkim Mariaim variadium 20 21 22 23 Ca 21 22 23 Sc Ti V 38 38 39 40 41 Sr Y Zr Nb 87.62 50.942 incohum incohum 39 40 41 Nb Sr Y Zr Nb 87.62 01.224 92.906 intatum	4 Be 20122 20122 Mgg scandum ttanium vanadum 20 21 22 23 24 20 21 22 23 24 24 Ca 44.966 47.867 50.942 51.996 Strontum 39 40 41 42 Sr 9 Y Zr Nb Mo 87.62 68.906 91.224 92.906 95.54 barlum Methum huteflum turtakum turgstein	4 Be 20122 305 Oxidation scandium titanium variadium chromsum nanganiese 20 Ca 21 22 23 24 25 Ca 44.966 47.867 50.942 51.996 54.939 38 Sr 39 40 41 42 43 Sr Y Zr Nb Mo Tc 100 87.62 89.996 91.224 92.996 95.94 198 198	4 Bee 20122 12 Mgg 24.305 Mgg 24.305 scandkum Mamium vanadkum chronsum manganese iron 20 21 22 23 24 25 26 Ca 44.966 47.867 50.942 51.996 54.938 56.845 Strontkam 39 40 41 42 43 44 Sr Y Zr Nb Mo Tc<	4 Be 30122 12 Mg 305 Mg 24 305 iscansture 12 Mg 305 20 21 22 23 24 25 26 27 Ca 40.078 Sc Ti V Cr Mn Fee Co 38 Sr 39 40 41 42 43 44 45 87.62 Y Zr Nb Mo Tc Ru Rh 87.62 Metlam 11.224 32.906 95.54 1940 101.07 102.91 57.62 barlum Metlam functium tuntatum tuntatum tuntatum ontextum ontextum ontextum 00000 101.07 102.91	4 Be 20122 12 Mg 24 305 Mg 24 305 12 Ng 20 12 20 21 22 23 20 23 24 25 26 27 28 Sc Ti V Cr Mn Fee Coo Ni 40.078 Storntam 100.41 100.41 100.41 100.41 100.41 38 Sr 39 40 41 42 43 44 45 46 Y Zr Nb Mo Tc Ru Rh Pd 38 Sr Y Zr Nb Mo Tc Ru Rh Pd 87.62 68.900 91.224 92.906 95.541 1981 101.07 102.91 106.42 54.41m Interburn Interburn Interburn 100.42 100.42 100.42 100.42 100.42 100.42 100.42 100.42	4 Be 20122 4 20122 12 Mgg 24.305 coldum 20 Ca 40.078 Strontum 38 Sr scandkum 21 thankum 22 vanadkum 23 chronsum 24 manganese 25 iron 26 coluit 27 rickel 28 copper 29 Ca 40.078 Strontum 38 Sc Ti 24 V Cr Mn Fee 56.845 28.003 58.603 63.546 44.966 47.867 50.942 51.996 54.938 56.845 58.003 58.603 63.546 38 39 40 41 42 43 44 45 46 47 Sr Y Zr Nb Mo Tc Ru Rh Pd Agg 87.62 59.000 91.224 92.906 95.541 1981 101.07 102.91 106.42 107.87 88.900 91.224 92.906 95.541 1981 101.07 102.91 106.42 107.87 88.900 91.224 92.906 95.541 1981 101.07 102.91 106.42 107	4 Bee 20122 12 Mg 24 305 coldum scanstum titanium vanadium manganese iron colatit rickel copper zmc 20 Ca 40.078 Strontum 21 22 23 24 25 26 27 28 29 30 Ca 40.078 Strontum Sc Ti V Cr Mn Fee Co Ni Cu Zn 40.078 Strontum 39 40 41 42 43 44 45 46 47 48 Sr Y Zr Nb Mo Tc Ru Rh Pd Agg Cd 87.62 bitelium futelium futelium futelium futelium futelium futelium gddd102.07 102.91 106.42 102.97 112.41	4 Bee 20122 5 B 10.811 12 Mgg 24.305 13 Al 20 12 Mgg 24.305 13 Al 20 20 21 22 23 24 25 26 27 28 29 30 31 20 Ca 40.078 Siconstam 21 22 23 24 25 26 27 28 29 30 31 30 Ca 40.078 Siconstam 51.996 51.996 58.893 58.693 63.546 65.30 60.723 38 Sr Y Zr Nb Mo Sc 98.933 58.693 63.546 65.30 60.723 38 Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In 37.62 b8.996 91.224 92.906 95.94 198 101.07 102.91 106.42 107.87 112.41 114.82 57.62 b8.996 91.224 92.906 95.94	4 Be 0122 watershort 5 8 6 B C 10.811 5 8 6 B C 10.811 5 10.912 6 C 10.911 12 Mg 24 305 Colcium 20 Colcium 20 Ca 40.078 13 21 14 22 13 23 14 AI Si 24 13 25 14 26 27 28 29 30 31 32 Ca 40.078 Sc 3100 44.966 17.867 V Crr 21 10.961 25.946 29 30 31 32 Ca 40.078 Sc 3100 31 50.942 51.966 51.906 54.938 56.845 98.903 58.693 63.546 65.396 69.723 72.61 Strondam 33 39 40 14 42 43 44 45 46 47 48 63.396 69.723 72.61 Strondam 33 39 40 41 42 43 44 45 46 47 48 49 50 Sr 57 72 85.996 96.544 101.07 102.91 106.42 107.87 112.41 114.82 118.71	4 Bee 90122 5 90122 6 B 7 B 6 C 7 B 12 Mg 24 305 13 Calcium 20 13 AI 14 Singuestic 15 AI 14 Singuestic 15 AI 14 Singuestic 15 AI 16 AI 16 B 17 B 17 B	4 Bee 30122 5 01201 6 0 12011 7 0 12011 8 0 12011 5 0 12011 6 0 12011 7 0 12001 8 0 12011 10 12011 10 12011 <td>4 Be 30122 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 7 8 5 5 5 5 5 5 5 5 5 5 5 7 5 5 5 5 5 5 5 5 5 5 8 5 5 5 5 5 5 5 5 5 5 5 5 5 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</td>	4 Be 30122 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 7 8 5 5 5 5 5 5 5 5 5 5 5 7 5 5 5 5 5 5 5 5 5 5 8 5 5 5 5 5 5 5 5 5 5 5 5 5 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Heavy Ion Therapy at LBNL(1975~1992)

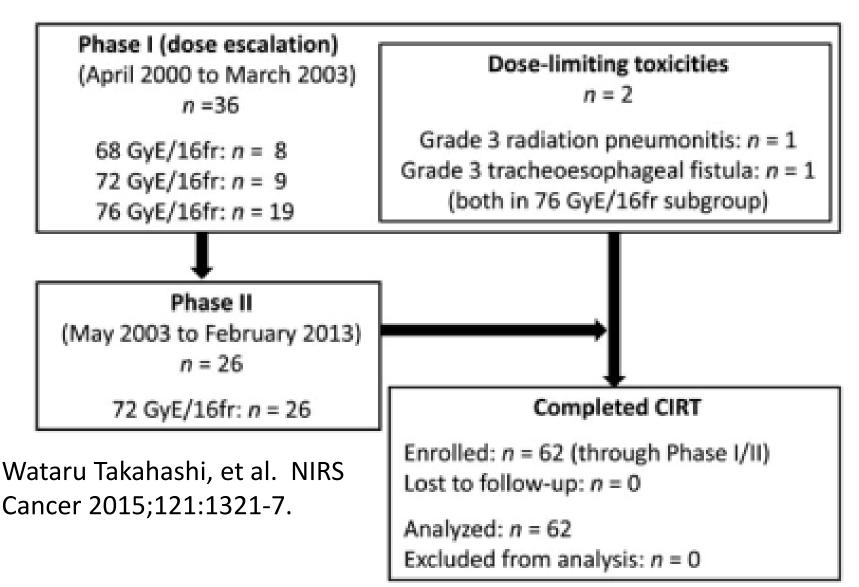
- Although many proposals for medical accelerator facilities were put forth by Berkeley Lab researchers and their colleagues in the late 1980s and early 1990s, a combination of economic and social factors prevented their realization.
- The world's first dedicated carbon-ion medical facility, although inspired by the work at Berkeley Lab, was not built in California but in Japan

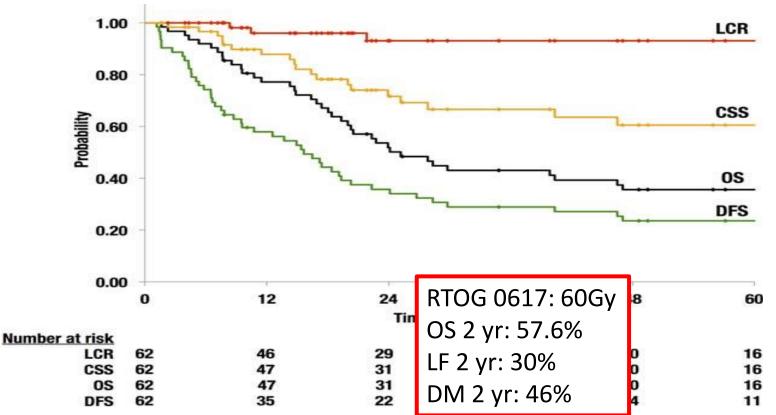
How Texas Lost the World's Largest Super Collider



Magnablend, a chemical blending plant, bought the shell of the abandoned SSC last year. PHOTOGRAPH BY WILL GRAHAM

OCTOBER 21, 2013 | by TREVOR QUIRK | COMMENTS


Texas Super Collider Project (Waxahachie)


- The projected cost of construction:\$6 billion
- 16,000 acres
- 52 miles in circumference
- Annual operating budget \$600 M
- By the summer of 1993, \$2 billion and 12 miles tunnel and Congress decided to stop funding the project.

A Prospective Nonrandomized Phase I/II Study of Carbon Ion Radiotherapy in a Favorable Subset of Locally Advanced Non–Small Cell Lung Cancer (NSCLC)

A Prospective Nonrandomized Phase I/II Study of Carbon Ion Radiotherapy in a Favorable Subset of Locally Advanced Non–Small Cell Lung Cancer (NSCLC)

Figure 3. Overall survival (OS), local control rate (LCR), disease-free survival (DFS), and cause-specific survival (CSS) rates in 62 patients with locally advanced non-small cell lung cancer. The 2-year OS, LCR, DFS, and CSS were 51.9%, 93.1%, 35.7%, and 71.7%, respectively.

Wataru Takahashi, et al. NIRS Cancer 2015;121:1321-7.

TABLE 3. Pattern of First Recurrence Sites in 62 Patients

n (%)			
0 (0)			
2 (3.2)			
1 (1.6)			
2 (3.2)			
18 (29.0)			
5 (8.1)			

Wataru Takahashi, et al. NIRS Cancer 2015;121:1321-7.

Review Article Carbon Ion The, rapy for Early-Stage Non-Small-Cell Lung Cancer

Yusuke Demizu et al.

BioMed Research International Volume 2014, Article ID 727962, 9 pages

Author	Institute	Year	Number of patients	Age (years)	Number of lesions	T1	T2	Total dose [Gy (RBE)]	Number of fraction	s Median FU (months)	Local control	Overall survival	Toxicity (≥grade 3)
Miyamoto et al. [21]	NIRS	2003	81	Mean 72	82	41	41	59.4-95.4	9–18	52.6	76% (5-yr)	42% (5-yr)	Lung 3.7%
Miyamoto et al. [22]	NIRS	2007	50	Mean 74.1	51	30	21	72	9	59.2	94.7% (5-yr)	50.0% (5-yr)	Skin 2%
Miyamoto et al. [23]	NIRS	2007	79	Mean 74.8	80	42	37	52.8–60	4	38.6	90% (5-yr)	45% (5-yr)	0%
Sugane et al. [24]	NIRS	2009	28	Mean 82*	2.9	12	17	52.8-72	4_9	NA	95.8% (5-yr)	30.7% (5-yr)	0%
Takahashi et al. [25]	NIRS	2014	151	Mean 73.9	151	91	60	36-50	1	45.6	79.2% (5-yr)	55.1% (5-yr)	0%
Iwata et al. [17]	HIBMC	2010	23	Median 75	23	15	8	52.8	4	30.5^{\dagger}	86% (3-yr)	86% (3-yr)	0%
Iwata et al. [19]	HIBMC	2013	27	Median 75 [‡]	27	0	27	52.8-68.4	4-10	44^{\dagger}	75% (4-yr) [§]	55% (4-yr) [§]	Lung 7%, skin 7% $^{\parallel}$
Fujii et al. [20]	HIBMC	2013	41	Median 76	41	26	15	52.8-70.2	4-26	39	78% (3-yr)	76% (3-yr)	Lung 5%, skin 4%

 TABLE 2: Studies of carbon ion therapy for early-stage non-small-cell lung cancer.

Gy: gray; RBE: relative biological effectiveness; FU: follow-up; NIRS: the National Institute of Radiological Sciences; yr: year; NA: not available; HIBMC: Hyogo Ion Beam Medical Center.

International Symposium on Ion Therapy

Emphasis on the "Heavy Ion"

2014 1st International Symposium on Ion Therapy

ISIT

ISI

2015 2nd International Symposium on Ion Therapy

2016: Nov 3/4th 3rd International Symposium on Ion Therapy

"Even if you're on the right track, you'll get run over if you just sit there"

Will Rogers