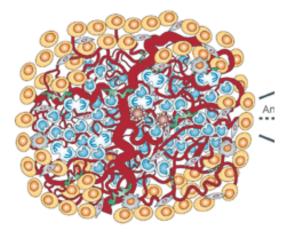


INSTITUT UNIVERSITAIRE DU CANCER DE TOULOUSE Oncopole

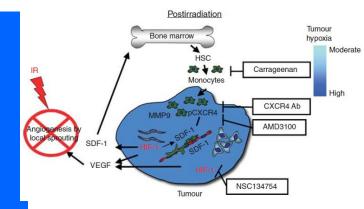
Are there common signaling pathways among highly radioresistant tumors? The examples of high grade gliomas, sarcomas and lung carcinoma.

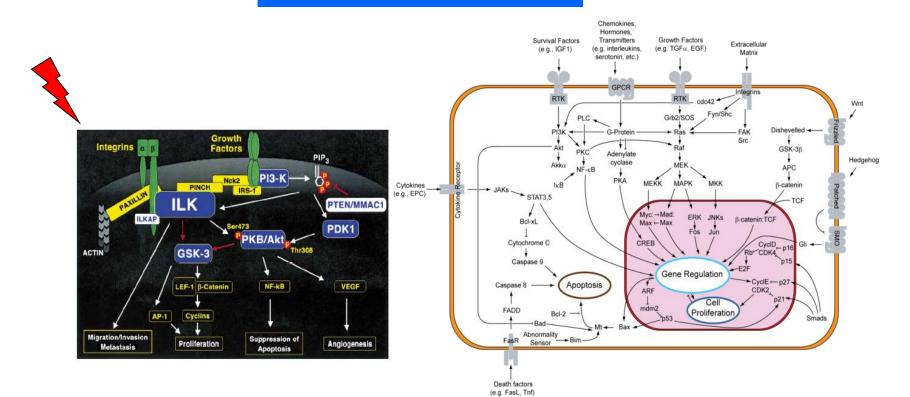
Elizabeth Cohen-Jonathan Moyal MD, PhD Radiation Oncology Department Team Tumor Radioresistance : from signaling pathway to clinical trial' **INSERM U1037** Institut Universitaire du Cancer Toulouse Oncopole Toulouse, France

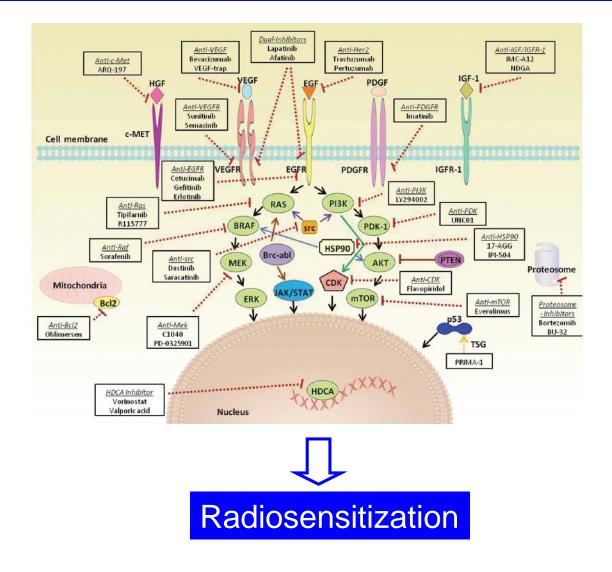


Institut national de la santé et de la recherche médicale

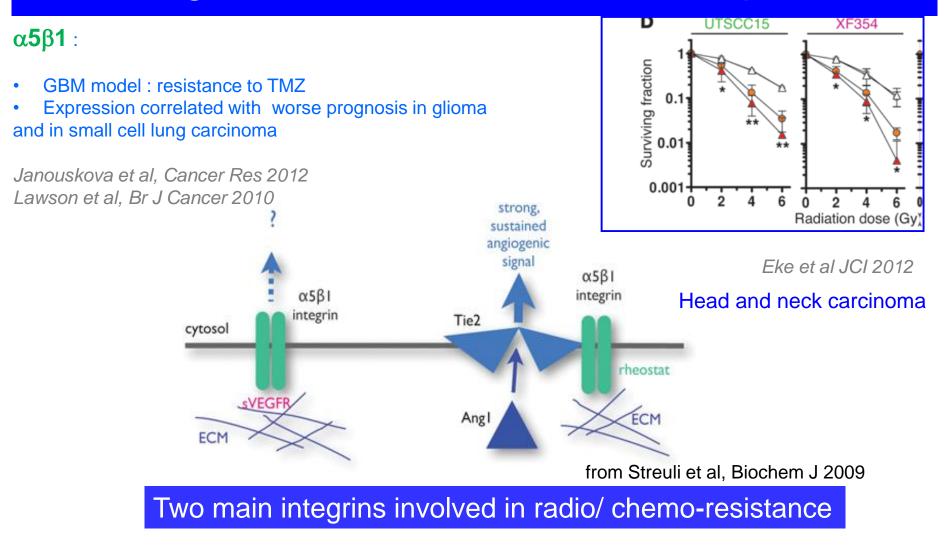
Genève, ICTR 2016

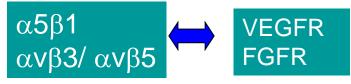



Tumor Radiosensitivity

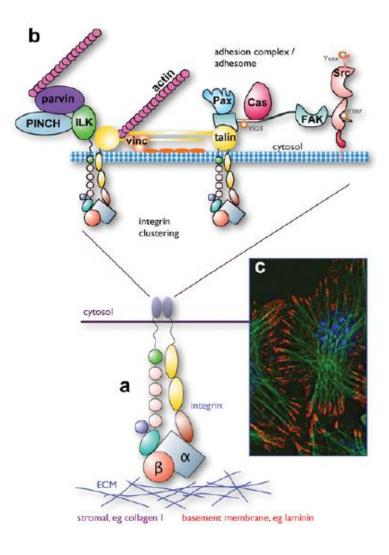

Intra-cellular radiosensitivity

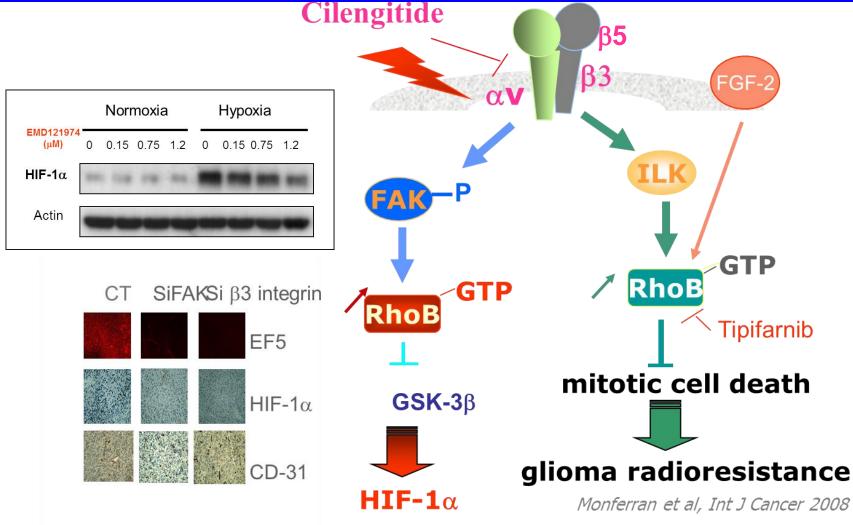
- Micro-environnement
- Hypoxia
- Tumor Angiogenesis
- Vasculogenesis





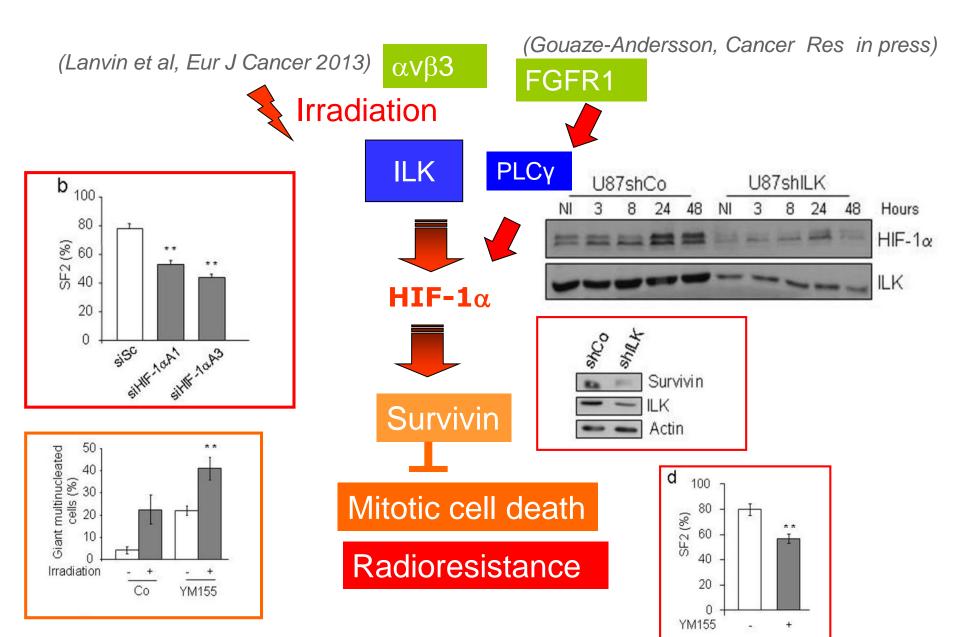
Targeting intra-cellular and microenvironment radioresistance pathway


Integrins and Growth factors receptors



Integrins

- αvβ3/αvβ5 Integrins
- Express on tumor cells and endothelial cells
- Angiogenesis
- Migration; invasion
- Proliferation
- Survival

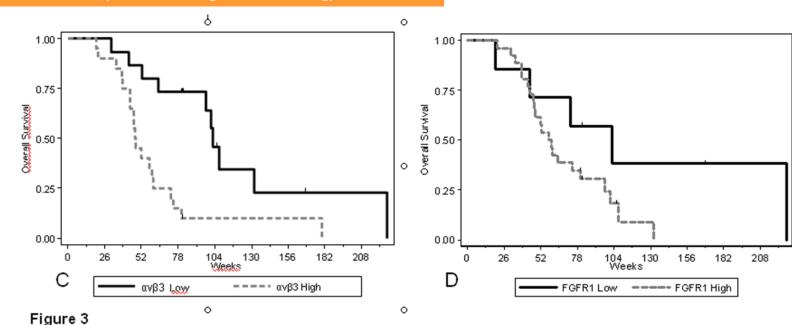

Involvement of $\alpha v\beta 3$ and $\alpha v\beta 5$ integrins in the control of radioresistance and of hypoxia pathway

(Skuli Cancer Res 2006; Skuli et al, Cancer Res 2009)

Ader et al, Oncogene 2002

Involvement of ILK –HIF1α and survivin in the regulation of radiation induced mitotic cell death in Glioblastoma

Are these factors predictive of clinical response to radiotherapy.. or to chemotherapy?


Phase I-II Tipifarnib and Radiotherapy for patients with de Novo Glioblastoma

(Ducassou et al, Eur J Cancer 2013)

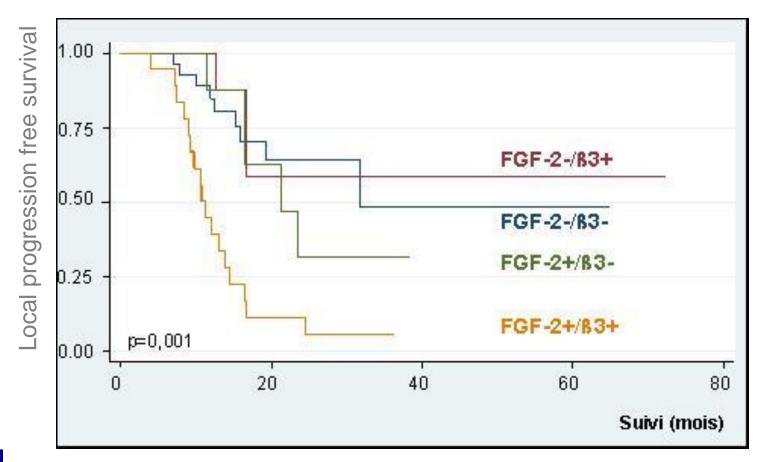
Tipifarnib: 200mg /day in continuous infusion starting 1 week before and then during 6 weeks of radiotherapy

Median OS : 80.3 weeks (95%CI = [57.8; 102.7]).

Median TTP : 23.1 weeks (95%CI = [15.4; 28.2])

Predictive factor of response to radiotherapy in GBM patients

(Ducassou et al, EJC 2013)

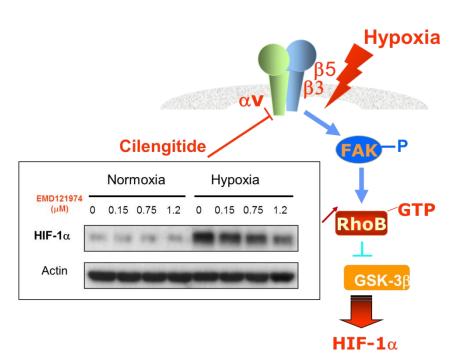

Table 6

Multivariate analysis (Cox analysis): Time to progression (TTP) and overall survival (OS) for the patients of the phases I and II according to surgical treatment, age and biological markers. The hazard ratios (HR) are presented with 95% confidence interval.

	IRS	Time to p	orogression		Overall sur	rvival	
		HR	95%CI	р	HR	95%CI	p
Surgery							
Biopsy		2.66	[0.85; 8.34]	0.093	3.98	[1.37; 11.56]	0.011
Large surgery		1			1		
ILK tumour cells							
	<6	1			1		
	≥6	1.46	[0.61; 3.52]	0.396	0.69	[0.22; 2.17]	0.530
Fibroblast growth fact	or receptor 1 (FGFR1) tumou	ir cells				
	<4	1			1		
	≥4	4.65	[1.02; 21.21]	0.047	4.10	[1.09; 15.40]	0.036
αvβ3 Integrin tumour of	cells						L
	<4	NA			1		
	≥4	NA			10.38	[2.70; 39.87]	0.001
FAK tumour cells							
	<4	0.96	[0.33; 2.80]	0.947	2.63	[0.90; 7.69]	0.077
	≥4	1			1		
Age at inclusion							
≤60 years		3.04	[1.0; 8.82]	0.041	NA		
>60 years		1			NA		

FGFR1 and $\alpha v\beta$ 3 integrins : Independent predictive factors of TTP and Overall survival

β3 integrin-FGF-2 :protein expression profile correlated with local control after radio-chemotherapy in locally advanced stage III NSCLC


(Massabeau et al Int J Radiat Bio Phys 2009)

Phase I clinical trial

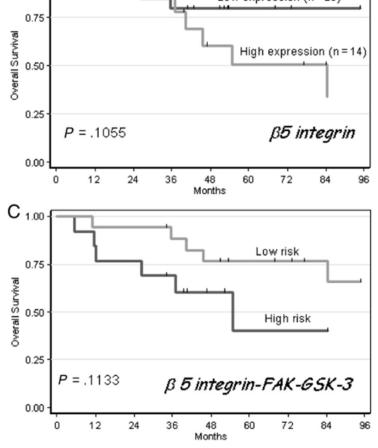
associating continuous infusion of Cilengitide with radio-chemotherapy

The β 5/ FAK /GSK 3 β integrin pathway in high-grade osteosarcoma: a protein expression profile predictive of response to neoadjuvant chemotherapy

Le Guellec et al, Human Pathol 2013

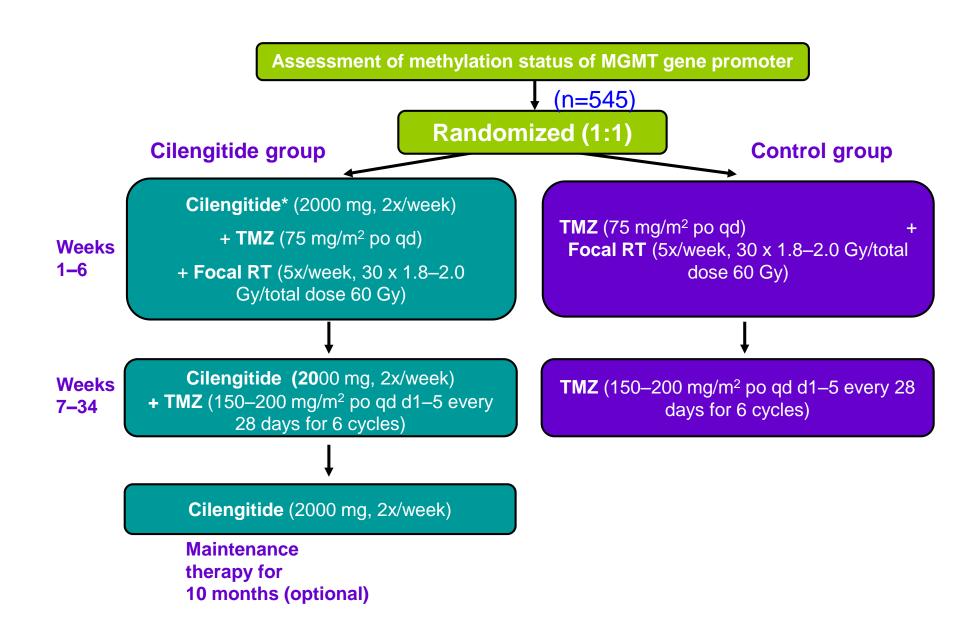
Characteristics	n (%)
Age at diagnosis (y)	
Median	18
Range	8-57
Sex	
Female	17 (47.2)
Male	19 (52.8)
High-grade osteosarcoma a	
Osteoblastic	8 (22.2)
Chondroblastic	13 (36.1)
Fibroblastic	10 (27.8)
Other	5 (13.9)
Tumor size (cm)	
≤5	5 (14.3)
>5	30 (85.7)
Missing	1
Tumor location	
Long bone	28 (80.0)
Flat bone	5 (14.3)
Other	2 (5.7)
Missing	1
Histological response b	
Good responders	20 (55.6)
Poor responders	16 (44.4)

^a World Health Organization classification, 2002 [1].

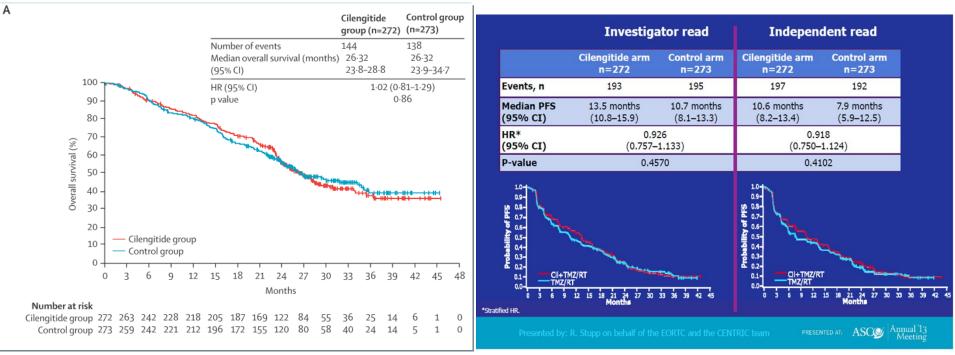

^b Evaluation performed on the 36 patients who underwent surgery after neoadjuvant chemotherapy. All patients underwent wide conservative surgery with a microscopically complete resection (R0).

A good response was defined as tumors composed of 10% viable tumor cells or less, and a poor response was defined as tumors containing more than 10% viable tumor cells [20,21].

β 5 integrin pathway involved in HIF-1 α regulation is associated with a worse OS and predicts response to chemotherapy


	Poor responders	Good responders	Р	AUC (95% CI)		b							
ĸ			.0212	73.9% (56.1-91.8)	I I			- 10 C	Lo	w exp	ression (n = 20)	j .
edian (range)	6 (0-9)	3 (0-8)						- 45			`		_
issing	1	3			0.75 -								
Κ3β			.1205	65.6% (45.2-84,0)	-				<u> </u>				
edian (range)	6 (2-12)	2.5 (0-9)			ive					_			
issing	0	2			2				-	1 Hiah	express	ion (n	=
integrin			.1452	64.7% (45.2-84.1)									
edian (range)	12 (0-12)	6 (0-12)			ୁ ଜୁ 0.50 -								
issing	1	1			ere ere								
in			.7015	53.8% (34.2-73.4)	Overall Survival								
edian (range)	3 (0-12)	4.5 (0-12)			~								
issing	2	0			0.25 -								
			.317	60.4% (40.3-80.5)		-							
edian (range)	6 (2-12)	3 (0-12)				P = .10	55				β 5 in	tear	'//
issing	1	3									,	2	
atenin			.8149	52.4% (32.3-72.5)									
edian (range)	4 (0-12)	4 (0-12)			0.00 -								_
issing	0	3				0 12	24	36	48	60	72	84	
integrin			.6908	54% (34-74.1)		5 12	24	50	Months	00	12	04	
edian (range)	6 (3-12)	6 (3-12)							MORITIS				
issing	1	2			<u> </u>								
integrin			.9567	51.1% (33.1-69.1)	C 1.00 f								
edian (range)	4 (0-12)	3.5 (0-12)						<u> </u>					
issing	1	2			I				1				
B			.8728	51.7% (30.5-73)	I	1			L.,	11	ow risk		
edian (range)	2 (0-6)	2.5 (0-6)			0.75 -		_			-	on non	_	
issing	3	2			0.751								
					म		_	<u> </u>					_
					erall Survival - 050					_			

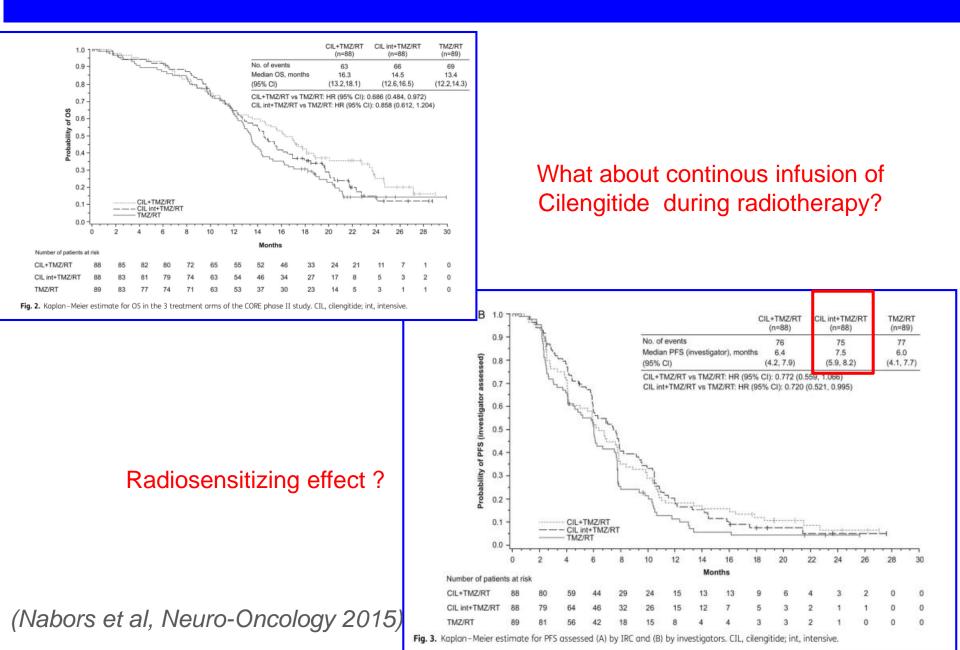
discriminated good and poor responders to chemotherapy, with the highest AUC (89.9%; 95%) CI, 77.4-1.00) yielding a sensitivity of 94%, a specificity of 86%, and a diagnostic accuracy of 90%.

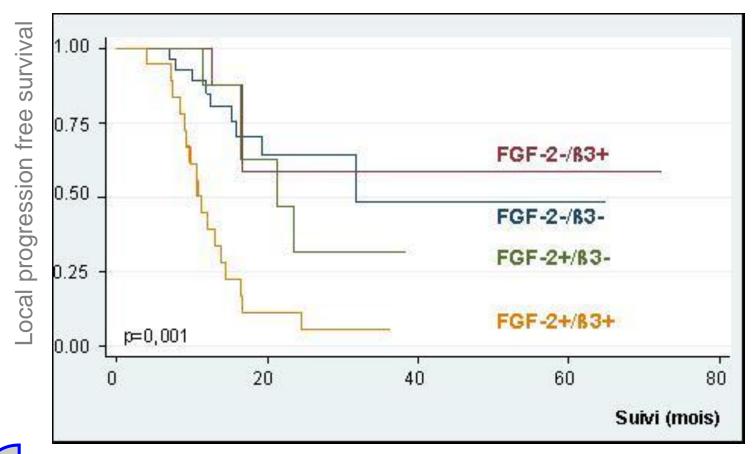

Inhibition of integrin's pathways with radiochemotherapy and clinical trials : disappointment and hopes!

Study 011 : Centric Merck-EORTC

Results

(Stupp et al, Lancet Oncol 2014)

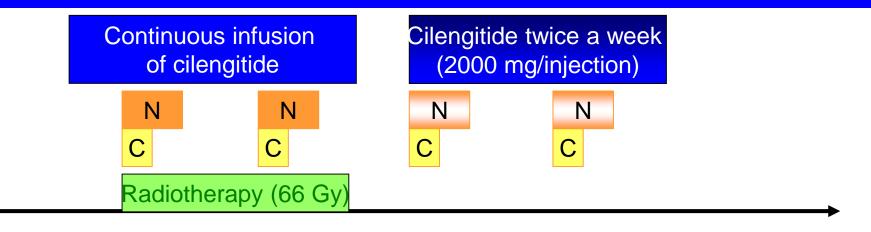

Yes but : short high life of Cilengitide



GBM: Phase II CORE control (SoC) TMZ TMZ RT SoC + cilengitide (Cil) arm A **MGMT status:** TMZ TMZ R Cil (2x/wk) RT unmethylated Cil (2x/wk) Cil (2x/wk) SoC + cilengitide (Cil) arm B TMZ TMZ RT Cil (2x/wk) Cil (2x/wk) Cil (5x/wk)

n=265 Primary endpoint: OS Potential radiosensitizing effect of β 5/ β 3 integrin inhibition when administred during each fraction of radiotherapy in GBM (5 f/ week)

β3 integrin-FGF-2 :protein expression profile correlated with local control after radio-chemotherapy in locally advanced NSCLC


(Massabeau et al Int J Radiat Biol Phys 2009)

Phase I clinical trial

associating continuous infusion of Cilengitide with radio-chemotherapy

Phase I clinical trial

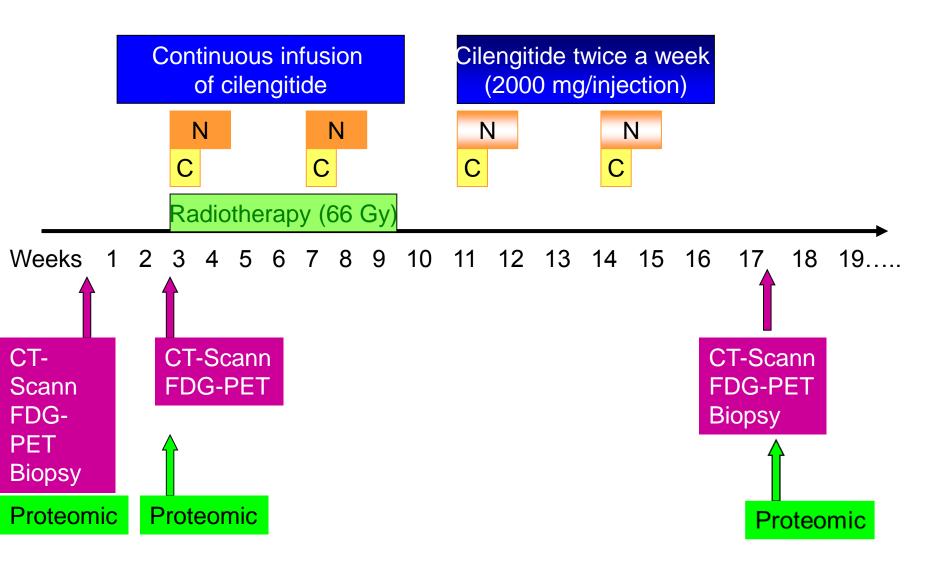
associating continuous infusion of Cilengitide with radio-chemotherapy

Weeks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19.....

Dose Level	Schedule	Cilengitide dosing
-1	Continuous infusion (7	8 mg/h
Starting dose	days pump) starting 2 weeks before radiotherapy until the end of radiotherapy	12mg/h
+1		18 mg/h
+2		27mg/h
+3		40 mg/h

DLT period observation : From week 3 to one month after the end of radio-chemotherapy

CDDP 80 mg/m²


Navelhine 25 mg/m²

Navelbine 25 mg/m²

Navelbine 15 mg/m²

Translational research

Patients characteristics

Age (years) (range)	62.5 (43-75)
ECOG Performance status (%)	
0	7 (50%)
1	7 (50%)
Location	
Right lung	7 (50%)
Left Lung	6 (43%)
Mediastinum	1 (7%)
Histological type	
Adenocarcinoma	8 (57%)
Squamous cell carcinoma	5 (36%)
Undifferenciated carcinoma	1 (7%)
Overall stage	
IIIA	3 (21%)
IIIB	11 (79%)
T stage	
ТО	1 (7%)
Т2	2 (14%)
Т3	3 (21%)
Τ4	8 (57%)
N stage	
N1	1 (7%)
N2	8 (57%)
N3	5 (36%)

- Fourteen patients were included between March 2010 and July 2013.
- Eleven patients were evaluable for DLT.
- Three patients were considered not evaluable for DLT and efficacy due to early withdrawn (Patient 1 and 14 for metastatic progressive disease on the imaging evaluation performed after 2 weeks of exclusive Cilengitide treatment while Patient 2 was withdrawn because of a cholestatic hepatitis in a context of pulmonary infection at week 4

Dose Level	Schedule	Cilengitide dosing	N patients	
-1		8 mg/h		
Starting dose	Continuous infusion (7 days pump) starting 2	12mg/h	5 (2 replaced)	
+1	weeks before radiotherapy	18 mg/h	3	
+2	until the end of radiotherapy	27mg/h	3	DLT : Tracheo- bronchial fistula
+3		40 mg/h	3	in the radiotherapy
				fields

After inclusion of the third patient at level 3, development of Cilengitide was interrupted by Merck KGa

Response

Response evaluated on TDM (RECIST)

	Ν	%
Best Response		
Partial response	9	81.8
Stable disease	2	18.2
Dreamerien Deferre (
Progression Before 6	months	post KT
No	9	81.8
yes	2	18.2

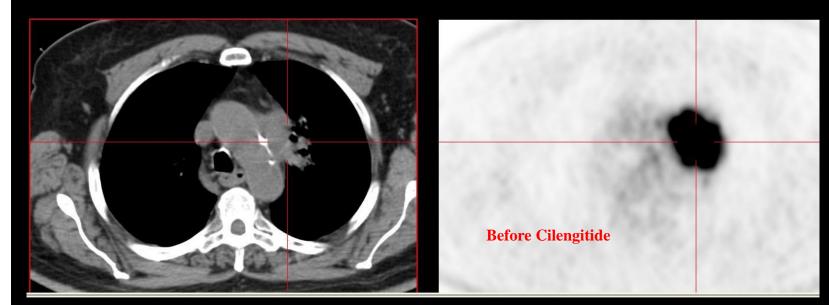
Response evaluated on PET (PERCIST)

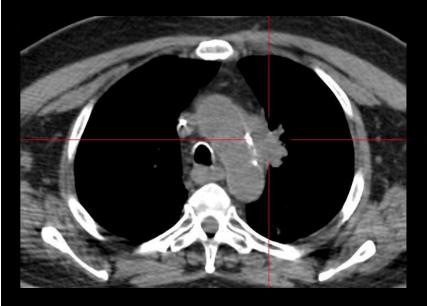
	Ν	(%)
Response Week 3		
PET Evaluation		
Not Done	3	27
Done	8	72.7
Stable disease	7	87.5
Progression	1	12.5
Response 2 months	post-RT	
Not Done	2	18.2
Done	9	81.8
Complete response	4	44.4
Partial response	4	44.4
Stable disease	1	11.1

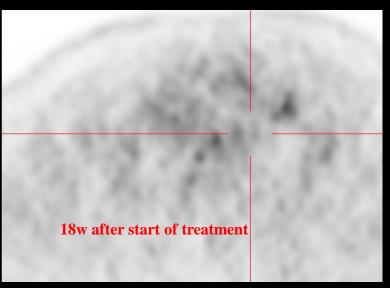
Estimation TTP	Ν	%
Progression		
No	5 (4	15,5)
Yes	6 (5	54,5)

Median TTP : 14.4 m (95%CI=[8.4 ; Not Reach]

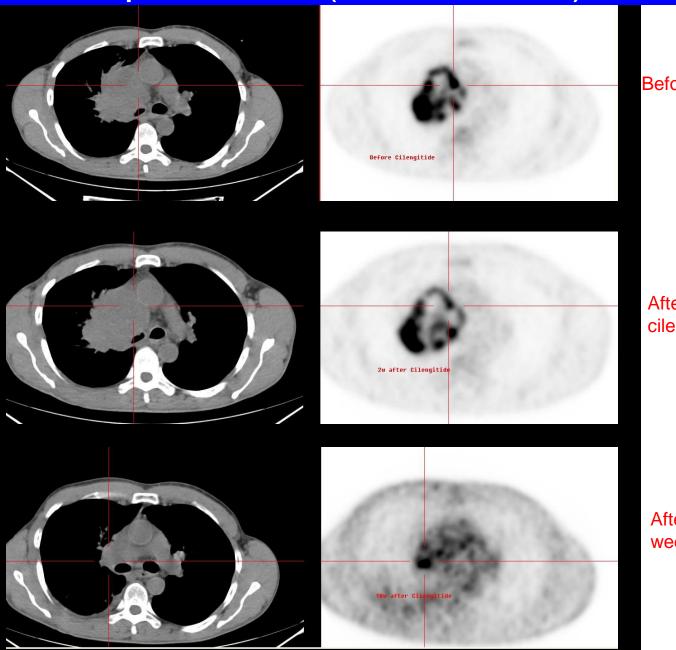
Estimation PFS	Ν	%
Progression or Death No	4 (3	6.4)
Yes	7 (6	3.6)

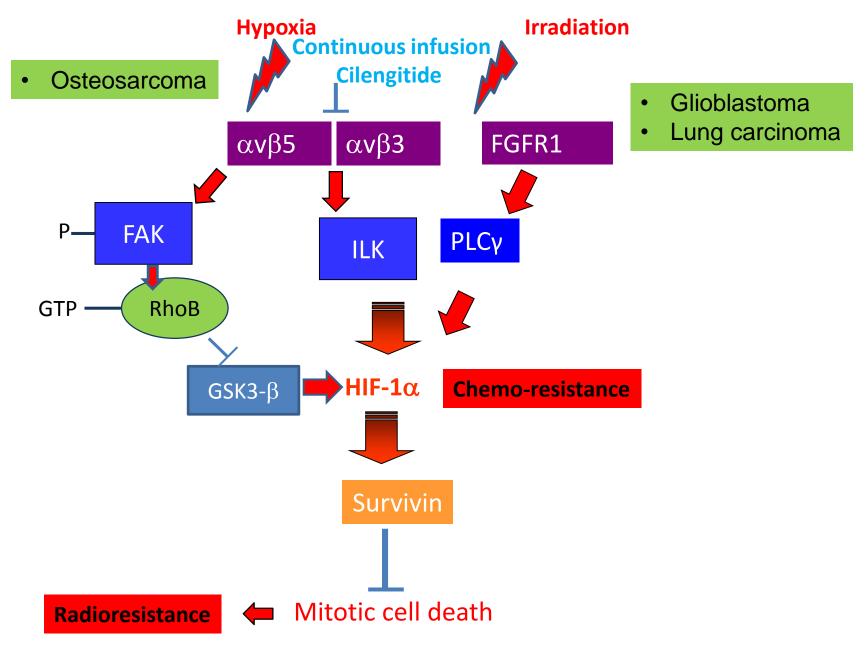

Median PFS : 14.4 m (95%CI=[8.4 ; Not Reach]


Estimation OS	N %
Alive	5 (45.5)
Dead	6 (54.5)
Median Overal Surviva 95%CI =[11.73; not read	


Dose Level	Best respo nse	TEP 3 weeks	TEP 18 weeks	Delay (m)	Local progr essio n	Progr essio n or death
0	PR	Stable	PR	38.18		yes
0	PR	Stable	CR	52.99	No	No
0	PR	PD	Stable	10.61		yes
1	PR	Stable	CR	45.24	No	No
1	PR		CR	9.89	No	Yes
1	Stable		PR	8.87		Yes
2	PR	Stable	PR	14.36		yes
2	PR	Stable	PR	8.38		Yes
2	Stable			3.06		Yes
3	PR	Stable	CR	23.46	No	No
3	PR	Stable		13.31	No	No

Proteomic analysis before and after Cilengitide for patients CR vs PR


TEP-TDM patient 4 (Dose level 0) : CR


TEP-TDM patient 10 (Dose level 2) : PR

Before treatment

After 2 weeks cilengitide

After 18 weeks

Proteomic analysis is currently performed to predict good responders to this treatment and to bring to light new targets

Thanks to my Radiobiology Team

Team « Radioresistance mechanisms : from signalling pathway to clinical trial » INSERM UMR1037 CRCT-TOULOUSE-FRANCE

Thanks to

Radiotherapy Department	Pneumology Department CHU •J Mazieres	•R Az	
•JM Bachaud •A Ducassou •A Laprie	ICR Medical Oncology Department	 L Dierickx S Zerdoud F Courbon 	
•C Massabeau •A Modesto	•JP Delord •C Gomez-Roca		Merck Serono •M Picard
ICR Clinical trial	Anatomo-pathology Department		•U Bethe
Department Muriel Mounier 	 E Uro-Coste S Leguellec I Rouquette 	Janssen •P De Porre	
Muriel PoublancT Filleron	CRCT Proteomic PlatformF LopezF Pons		