[Preliminary](#page-22-0)

Università degli Studi di Pavia

INFN - Pavia

INFN

Ludwig-Maximilians-Universität München

ICTR-PHE 2016 Geneva - February 18,2016

Implementation of an analytical lateral dose model in the proton TPS- CERR

Elettra V. Bellinzona

on behalf of Universit`a degli Studi di Pavia, Istituto Nazionale di Fisica Nucleare INFN- Pavia Ludwig-Maximilians-Universität München groups

[Goal](#page-1-0)

[Goal](#page-1-0)

-
-
-
-
- [Preliminary](#page-22-0)
-

Implementation of a new computational model to overcome limitations of current approximated models

Goal

[Computational](#page-3-0) model

A computational model for dose deposition evaluation

Bellinzona E.V.et al., Phys. Med. Biol. 61 doi:10.1088/0031-9155/61/4/N102-7 (2016)

Lateral [profile: core](#page-4-0)

Lateral profile: Electromagnetic core

Core

Multiple coulomb scattering:

 $f(\theta)\theta d\theta = f_M(\theta)d(cos\theta)d\phi/2\pi$ Calculation of χ^2_e , χ^2_α

Lateral profile: Electromagnetic core

Lateral [profile: core](#page-4-0)

[Preliminary](#page-22-0)

The Coulomb scattering distribution is well represented by the theory of Molière.

 χ stands for an angle related to single scattering event; θ stands for a net angle after multiple scattering events;

The theory predicts the probability that a particle is in the angular interval $d\theta$ after traversing a thickness t^{-1}

$$
f(\theta)\theta d\theta = f_M(\theta)d(cos\theta)d\phi/2\pi
$$

¹H. A. Bethe, Phys.Rev.89, 1256,(1953)

Implementation of an analytical lateral dose model in the proton TPS- CERR 6

Lateral [profile: core](#page-4-0)

[Preliminary](#page-22-0)

The crucial factors of Molière's theory are two parameters:

 $\triangleright \ \chi_{\mathbf{c}}^2 = 0.1569 \cdot 10^{-6} Z^2 z^2 \frac{x}{A} \frac{1}{p^2 \beta^2}$ that is related to the scattering angle RMS

 $\blacktriangleright \chi^2_\alpha = \mu^2 \chi^2_0$ with

$$
\left\{ \begin{aligned} \mu^2 &= \left(1.13 + 3.76 \frac{z^2 Z^2}{137^2 \beta^2} \right) \\ \chi_0^2 &= \left(\frac{\hbar}{p} \frac{Z^{1/3}}{0.468 \cdot 10^{-8} (cm)} \right)^2 \end{aligned} \right.
$$

This parameter explains the Coulomb potential screening

Lateral [profile: core](#page-4-0)

[Preliminary](#page-22-0)

Some results of the comparison between the model and $FLUKA^{2,3}$ simulation

Experimental set up:

- **I** proton beam
- homogeneous water phantom
- \blacktriangleright $x[(5cm,5cm);1bin]$ y [(5cm, 5cm); 400bins] $z[(0cm, 30cm); 3000bins]$
- ▶ Heidelberg Ion Beam Therapy Center (HIT) phasespace

 2 T.T. Bohlen et. all, Nuclear Data Sheets 120, 211-214 (2014)

3A. Ferrari et. all, CERN-2005-10 (2005), INFN/TC05/11, SLAC−R−773

Lateral profile: Electromagnetic core

E= 157.43 MeV, Normalized depht= 0.96

Lateral [profile: core](#page-4-0)

Lateral profile: Nuclear Tails

Lateral profile: [Nuclear Tails](#page-10-0)

Core **Tails** Nuclear interaction: Multiple coulomb scattering: $(1-W_p)\frac{t(x)}{\int_{-\infty}^{+\infty}t(x)\mathrm{d}x}$ $f(\theta)\theta d\theta = f_M(\theta)d(cos\theta)d\phi/2\pi$ Calculation of χ^2_c , χ^2_a Calculation of W_n

Bellinzona

Lateral profile: [Nuclear Tails](#page-10-0)

[Preliminary](#page-22-0)

Lateral profile: Nuclear Tails

To take into account also nuclear collision (of hadrontherapy interest), a modified Cauchy-Lorentz^{4,5} distribution is applied:

$$
f(x)_{x,y} = W_p f_M(x) + (1 - W_p) \frac{t(x)}{\int_{-\infty}^{+\infty} t(x) dx}
$$

 $f_M(x) =$ Molière electromagnetic theory $t(x) =$ Cauchy-Lorentz distribution W_p = fraction of events without nuclear interactions

⁴Soukup M, Fippel M and Alber M 2005 Phys. Med. Biol. 50 5089104

 5 Li Y et al 2012 Phys. Med. Biol. 57 98397

Lateral profile: Nuclear Tails

Lateral profile: [Nuclear Tails](#page-10-0)

[Preliminary](#page-22-0)

 W_p is the percentage of particles that have only had electromagnetic interactions, i.e. no nuclear interactions, as a function of the traversed thickness, for protons of incident kinetic energy E and range R in water, at a certain water thickness x^6

$$
W_p = \frac{1}{2} \left[1 - \left(\frac{E - E_{th}}{m} \right)^f \frac{x}{R} \right] \left[1 + \text{erf}\left(\frac{R - x}{\tau} \right) \right] ,
$$

with

- \triangleright erf $f = 1.032$ error function
- \blacktriangleright m proton mass (MeV)
- $E_{th} = 7$ MeV ¹⁶O threshold energy of the Coulomb barrier.

 6 W. Ulmer 2007, Rad. Phys. and Chem. 76 1089-107

Lateral profile: Complete

Lateral profile: [Nuclear Tails](#page-10-0)

7Data courtesy of Heidelberg Ion Therapy Center (HIT)

8Data courtesy of Heidelberg Ion Therapy Center (HIT)

Treatment planning system: **Overview**

[Overview](#page-16-0)

[Preliminary](#page-22-0)

Treatment planning system: **Overview**

[Overview](#page-16-0)

[Preliminary](#page-22-0)

9

9Bellinzona V. E. et al., Physica Medica doi: 10.1016/j.ejmp.2015.05.004

Implementation of an analytical lateral dose model in the proton TPS- CERR 18

[Overview](#page-16-0)

[Preliminary](#page-22-0)

Treatment planning system: **Overview**

Treatment planning system: **Overview**

A Computational Environment for Radiotherapy Research^{10 11}

CERR:

[CERR TPS](#page-20-0)

[Preliminary](#page-22-0)

The Computational Environment for Radiotherapy Research (CERR)

 $10_{\text{Deasy JO et. al, Med Phys. 2003 May;30(5):979-85.}}$

11Schell S. and Wilkens J. J., Med Phys 2010, 37(10):533040.

Bellinzona

CERR:

[Model imple](#page-21-0)mentation

[Preliminary](#page-22-0)

For each beam (many depths and energies):

 \mapsto The longitudinal dose

is evaluated by using database of GEANT4 simulations

- \rightarrow The lateral dose (normalized by the area) is calculated by
	- 1. a double gaussian parametrization in which σ_1 and σ_2 are read from another database $D_{xy} = \frac{1}{2\pi\sigma_1} * \exp\left[\frac{(-(X^2+Y^2)}{2\sigma_1^2}\right] + \frac{1}{2\pi\sigma_2} * \exp\left[\frac{(-(X^2+Y^2)}{2\sigma_2^2}\right]$

or

- 2. the model code
- \rightarrow So the total dose is the result of multiplication $D_{tot} = D_{xy} * D_z$

Preliminary Results

[Preliminary](#page-22-0) Results

Preliminary comparison between the treatment plan lateral dose obtained with the model and with the Double Gaussian parametrization.

Experimental set up:

- \blacktriangleright proton pencil beam $\sigma_0 = 0.4$ cm
- homogeneous water phantom
- (note that x axis) is a beam-relative axis)

Implementation of an analytical lateral dose model in the proton TPS- CERR 24

Implementation of an analytical lateral dose model in the proton TPS- CERR 25

Conclusion and outlooks

[ICTR-PHE](#page-0-0) 2016 Bellinzona

-
-
-
- [Preliminary](#page-22-0)
- [Conclusion](#page-25-0)

\blacktriangleright Conclusion

- − First investigations show an improvement in accuracy of lateral dose evaluation using the new analytical model
- − the computational time is comparable, even though the process still has to be optimized
- − the model can be considered competitive to full Monte Carlo evaluation, and also to Double Gaussian method in accuracy.

\blacktriangleright Future perspectives and forthcoming steps

- − evaluation of a full treatment in water phantom
- − time optimization
- − other materials will be taken into account

