MODELLING THE EFFECT OF SYMMETRICAL DIVISION OF CANCER STEM CELLS ON TUMOUR RESPONSE TO RADIATION

Loredana G. Marcu^{1,2} & David Marcu¹

Faculty of Science, University of Oradea, Romania & School of Physical Sciences, The University of Adelaide, Australia

CHALLENGES IN THE MANAGEMENT OF HEAD&NECK TUMOURS*

Clinical challenges:

- preservation of critical organ function
- management of treatment side-effects
- timing of multimodality treatments

Radiobiological challenges:

- tumour hypoxia
- accelerated repopulation of tumour cells during treatment

* L. Marcu & E. Yeoh 2009 J Cancer Res & Clin Oncol 135(10):1303-1314

PREDICTIVE ASSAYS FOR TUMOURS

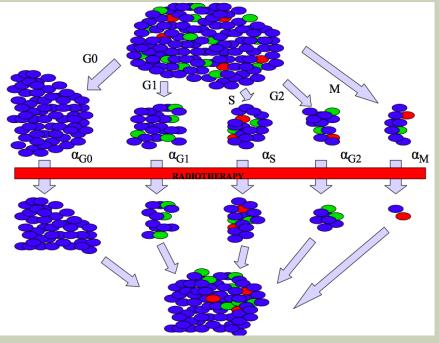
Aim: to choose a treatment protocol that is optimal for each individual patient.

Classification of assays:

- oxygen status
- proliferative potential
- intrinsic cellular radiosensitivity

HOWEVER: despite some promising *in vitro* results, the large majority of predictive assays have failed during *in vivo* testing.

E. Hall Radiobiology for the radiologist 7th ed – "... we considered omitting the chapter on predictive assays because they have yet to justify their early promise".


FROM PREDICTIVE ASSAYS TO IN SILICO MODELLING

MODELS:

• allow predictive assessment of the multi-parameter processes that govern radiotherapy outcome

allow quantitative treatment optimisation

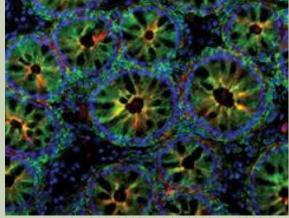
answer to "what if" questions

L. Marcu et al 2002 Australas Phys Eng Sci Med 25:155-161

MODELLING AIMS (I)

To grow a virtual HNC with biologically realistic parameters.

To include **CSC** in the model* and implement their **properties** based on literature findings.


To evaluate the effect of CSC division pattern on tumour response to radiotherapy under hypoxic conditions.

* L. Marcu & E. Bezak 2012 Cell Prolif 45(5):404-412

CURRENT TREATMENT CHALLENGES: CANCER STEM CELLS

Cancer stem cells (CSC) are a subpopulation of cells originating from stem cells and have the following properties¹:

- > are long lived,
- have the ability to proliferate indefinitely
- can generate al heterogeneous lineages of the original tumour
- can recreate themselves by symmetric division²
- are more radioresistant than non-stem cancer cells³
- > they preferentially reside in special microenvironmental niches within the tumour⁴

Nature Med 14, 814 (2008) doi:10.1038/nm0808-814

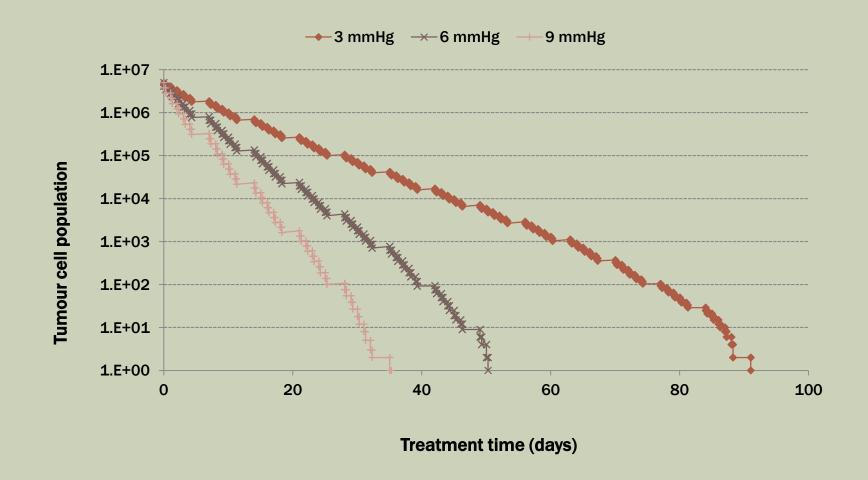
- ¹ N. Moore et al **2011** J Oncology 396076
- ² S. Morrison et al **2006** Nature 441, 1068
- ³ D. Ramirez-Guerrero 2015 AAAS abstract
- ⁴ C. Peitzsch et al **2014** Int J Radiat Biol 90, 636

HEAD & NECK TUMOUR GROWTH MODEL DURING RT

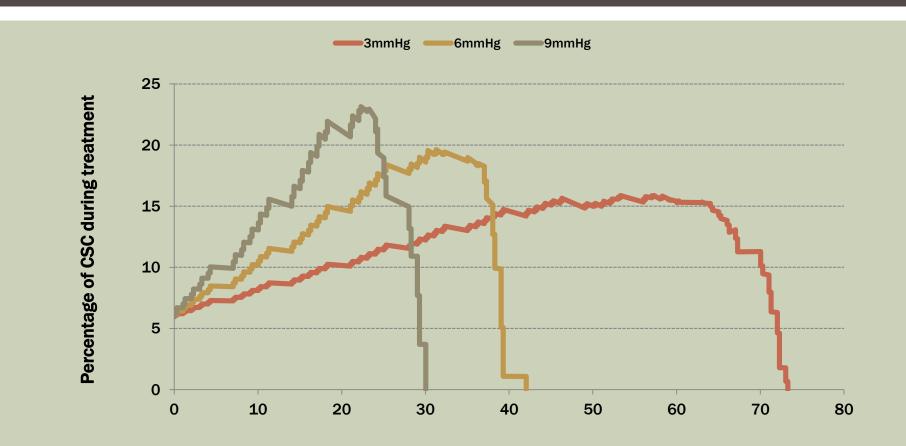
Cell kinetic parameter	Mean value (model)	Mean value & range (literature)	Publication
Volume doubling time	52 days	45 days (33-150)	Begg & Steel, 2002
Labelling index	5%	7% (5-17)	Steel, 1989
T _s (length of the S phase)	11 hours	10.7 hours (4.4-45.7) 11 hours	Begg et al, 1999 Tannock & Hill, 1998
T_{C} (cell cycle time)	33 hours (20-60)	3xT _s	Hall, 2000
Tumour composition	 CSC Differentiated cells Quiescent cells 	 Cancer stem cells Cells capable of limited divisions Non-proliferating cells 	Tubiana, 1986 Prince 2007, Moore 2011
Percentage of CSCs in the tumour	5-6% (pre treatment) ? (during treatment)	1.7 – 13.5% (HNC) 12.3% (HNC) 0.4 – 82.7% (other cancers)	Tang 2013 Harper 2007 Huang 2013

RT: CLINICAL JUSTIFICATION

The RTOG 9003 trial has shown that:

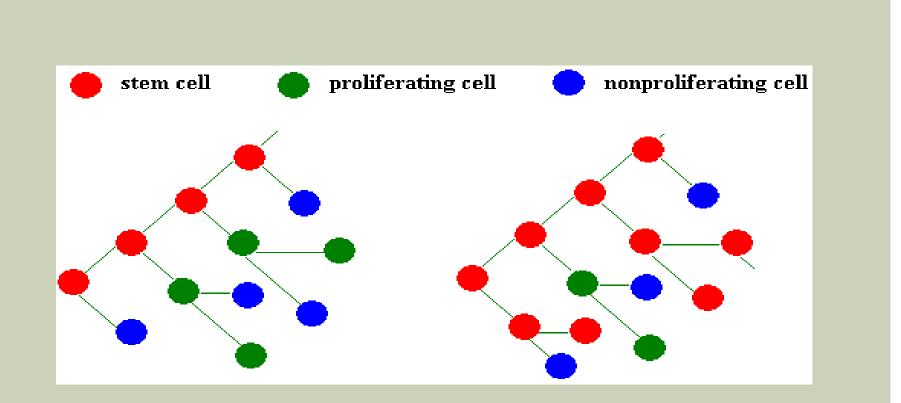

Hyperfractionated radiotherapy for advanced head and neck cancer is the optimal treatment schedule due to the high rate of locoregional control and no significant increase in late toxicity when compared with standard treatment regimens (Fu et al. 2000, Beitler et al. 2014).

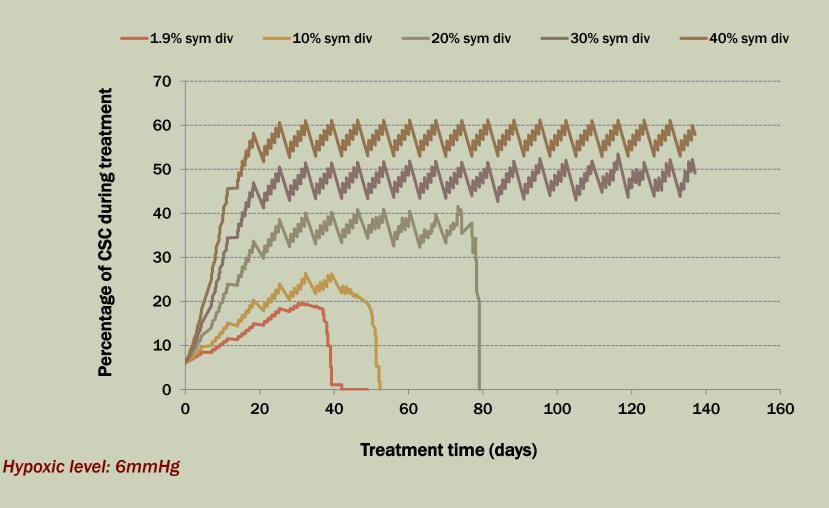
Furthermore, the advantage of hyperfractionation over standard and accelerated radiotherapy has been demonstrated by the meta-analysis undertaken by Bourhis et al. (2006).


TUMOUR HYPOXIA AND CSC

Experimental findings	References
Hypoxic conditions lead to an increase in the CSC fraction and promote acquisition of stem-like phenotype	AM McCord et al 2009 Mol Cancer Res 7:489
VEGF has higher expression in the CSC subpopulation	S Bao et al 2006 Cancer Res 66:7843
The presence of HIF2 α proteins maintain an undifferentiated phenotype among CSCs (i.e. sustained CSC status)	A Jogi et al 2002 Proc Natl Acad Sci USA 99:7021

CELL SURVIVAL CURVES UNDER VARIOUS HYPOXIC CONDITIONS


CSC DISTRIBUTION DURING TREATMENT FOR VARIOUS LEVELS OF HYPOXIA


Treatment time (days)

Obs: It nearly appears that hypoxia keeps the CSC subpopulation under control.

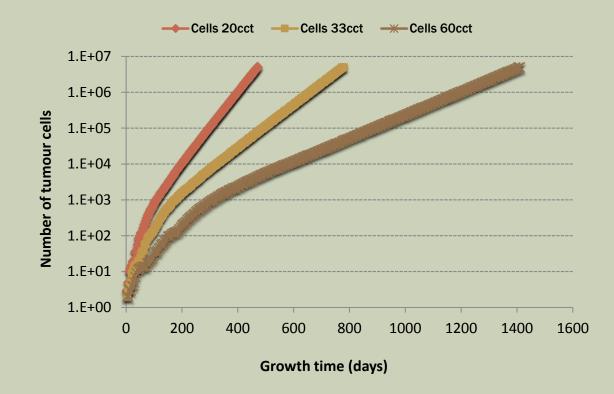
CSC DIVISION PATTERN

THE IMPACT OF SYMMETRICAL DIVISION PROBABILITY ON CSC SUBPOPULATION

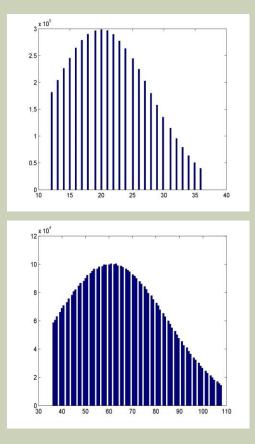
MODELLING AIMS (II)

GROWTH KINETICS

To evaluate inter-patient variation of tumour response to radiotherapy as a function of:

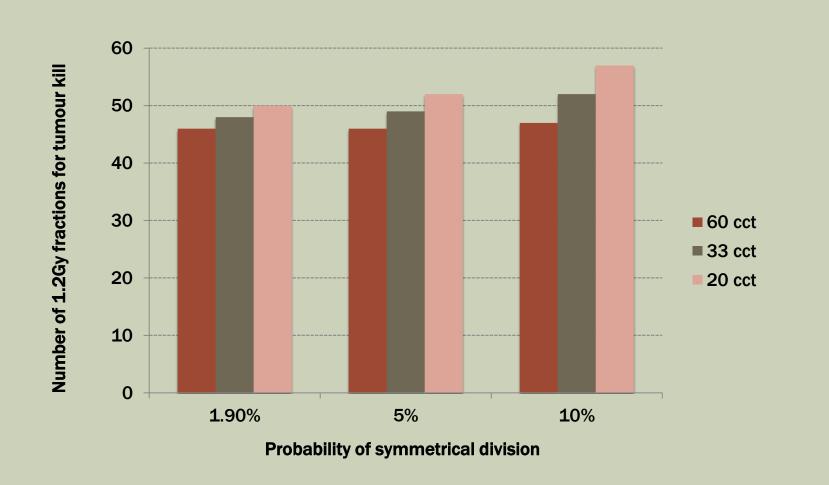

CSC SUBPOPULATION KINETICS

HYPOXIA

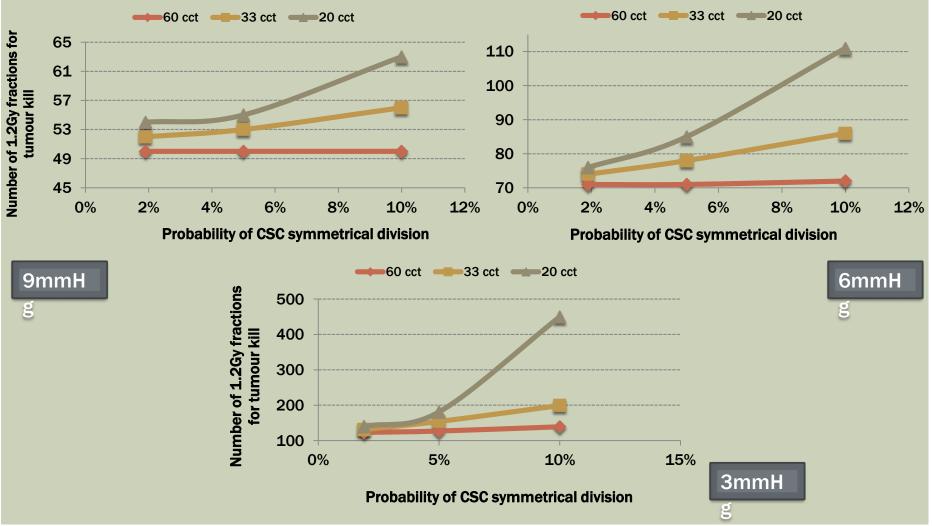

TUMOUR-RELATED PARAMETERS INCLUDED IN THE MODEL

Tumour-related parameters	Values / ranges
Cell cycle time	20h, 33h, 60h
Нурохіа	3mmHg – 10mmHg
Probability of symmetrical division	1.9% - 10%

HEAD AND NECK TUMOUR GROWTH



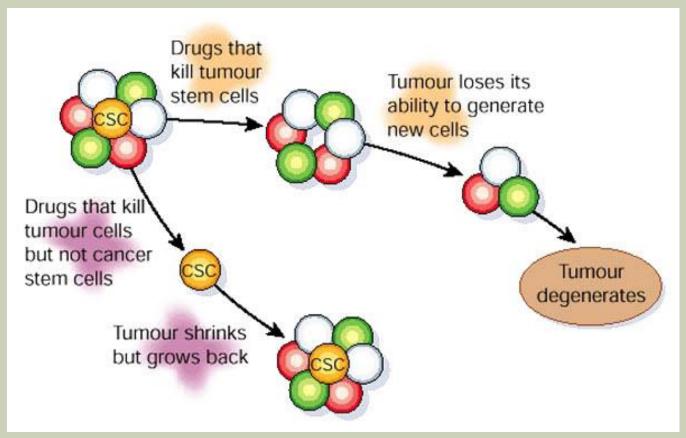
Exponential tumour growth curves for three head and neck cancers with different growth kinetic parameters.


Gaussian distribution of cell cycle times around the mean value

TUMOUR RESPONSE AS A FUNCTION OF GROWTH KINETICS AND CSC DIVISION PATTERN FOR OXIC TUMOURS

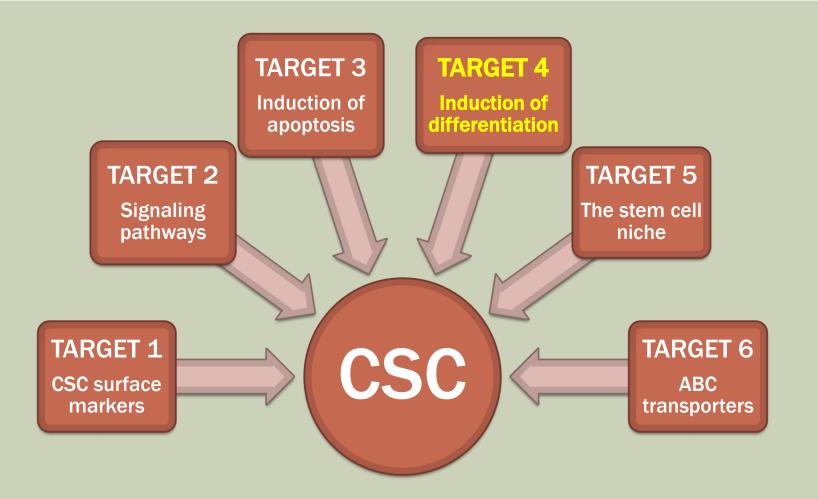
L. Marcu et al **2016** Cell Prolif (in press)

INTER-PATIENT VARIATION OF TUMOUR RESPONSE TO RT AS A FUNCTION OF CSC DIVISION PATTERN AND TUMOUR HYPOXIA


© LG Marcu, ICTR-PHE, Geneva 2016

L. Marcu et al 2016 Cell Prolif (in press)

CONCLUSIONS (I)


- Oxic/very mildly hypoxic HNC are controlled by hyperfractionated radiotherapy, irrespective of growth kinetics and CSC division pattern.
- Moderately hypoxic tumours show different responses to radiotherapy as a function of growth kinetics.
- In rapidly proliferating tumours the number of fractions needed for tumour control increases exponentially with the probability of CSC symmetrical division, whereas in moderately growing HNC this behaviour is linear.

CSC MARKERS & TREATMENT RESPONSE

R. Tannishtha et al 2001 Nature 414, 105-111

CSC - TARGETING

ONGOING AND FUTURE WORK

THEORETICAL LEVEL

- Modelling CSC-targeting through induction of differentiation
- All-trans-retinoic-acid (ATRA)

EXPERIMENTAL LEVEL

- > HNC cell line growth and CSC identification via surface markers
- Cell line irradiation for determination of SF2

FINAL CONCLUSIONS

- Differences in treatment response of various HNC models due to CSCs and their interplay with growth kinetics show the importance of CSC identification within the tumour.
- > The need for accurate markers for CSC labelling is therefore imminent.
- Both quantitative and qualitative knowledge on CSC is needed to describe the resistant subpopulation and to design treatment regimens accordingly.

TOWARDS PERSONALISED TREATMENT IN HEAD AND NECK CANCER

REPAIR REPOPULATION REDISTRIBUTION REOXYGENATION RADIORESISTANCE

PREDICTIVE ASSAYS FOR CSCs IMPROVED OXYGEN PERFUSION PROTECTION OF NORMAL TISSUE

Personalised Radiotherapy

ACKNOWLEDGMENTS

Ministry of National Education, CNCS-UEFISCDI, Project no. PN-II-ID-PCE-2012-4-0067